1887

Abstract

A Gram-staining-positive, catalase-positive, oxidase-negative, facultatively anaerobic, rod-shaped bacterium designated strain DCY88, was isolated from flowers of magnolia. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that the strain formed a distinct lineage within the genus that was closely related to RH-N24 (97.8 %). The other most closely related species were NRRL NRS-1356 (94.3 %), DSM 22170 (94.2 %), DSM 8320 (93.9 %), Am49 (93.8 %) and the type species of the genus, ATCC 842 (93.3 %). Cells of the strain were endospore-forming and motile by peritrichous flagella. Strain DCY88 formed pink-pigmented colonies on trypticase soy agar and R2A agar medium. Growth of strain DCY88 occurs at temperatures 5–37 °C, at pH 4–9 and 0.5–5.5 % NaCl (w/v). The menaquinone was MK-7.The cell wall peptidoglycan of strain DCY88 contained -diaminopimelic acid. The major fatty acids were anteiso-C (61.0 %) and C (11.0 %). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified polar lipid. The strain DCY88 contained spermidine as the major polyamine. The DNA G+C content was 51.6 mol%. The DNA–DNA hybridization relatedness between strain DCY88 and RH-N24 was 48 ± 2 %. The phenotypic, phylogenetic and chemotaxonomic results indicate that the strain DCY88 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DCY88 ( = JCM 19886 = KCTC 33429).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000521
2015-11-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3959.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000521&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D.. ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253–260 [CrossRef] [PubMed].
    [Google Scholar]
  2. Busse J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  3. Cao Y., Chen F., Li Y., Wei S., Wang G.. ( 2015;). Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 65: 165–170 [CrossRef] [PubMed].
    [Google Scholar]
  4. Carro L., Flores-Félix J. D., Ramírez-Bahena M. H., García-Fraile P., Martínez-Hidalgo P., Igual J. M., Tejedor C., Peix A., Velázquez E.. ( 2014;). Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus. Int J Syst Evol Microbiol 64: 3028–3033 [CrossRef] [PubMed].
    [Google Scholar]
  5. Claus D., Berkeley R. C. W.. ( 1986;). Genus Bacillus Cohn 1872, 174AL. . In Bergey's Manual of Systematic Bacteriology, pp. 1105–1139. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G..vol. 2 Baltimore: Williams & Wilkins;.
    [Google Scholar]
  6. Collins M. D.. ( 1985;). Isoprenoid quinone analyses in bacterial classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;.
    [Google Scholar]
  7. Cowan S. T., Steel K. J.. ( 1974;). Manual for the Identification of Medical Bacteria., Cambridge: Cambridge University Press;.
    [Google Scholar]
  8. Dsouza M., Taylor M. W., Ryan J., MacKenzie A., Lagutin K., Anderson R.-F., Turner S.-J., Aislabie J.. ( 2014;). Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil. Int J Syst Evol Microbiol 64: 1406–1411 [CrossRef] [PubMed].
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  10. Fang Z., Shen C. M., Moon D.-C., Son K.-H., Son J.-K., Woo M.-H.. ( 2010;). Quantitative and pattern recognition analyses for the quality evaluation of magnoliae flos by HPLC. Bull Korean Chem Soc 31: 3371–3381 [CrossRef].
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  12. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  13. Glaeser S. P., Falsen E., Busse H. J., Kämpfer P.. ( 2013;). Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 63: 777–782 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. . In Methods in Enzymology, pp. 138–146. Edited by Colowick S. P., Kaplan N. O.. New York: Academic Press;. [CrossRef].
    [Google Scholar]
  15. Jiang B., Zhao X., Liu J., Fu L., Yang C., Hu X.. ( 2015;). Paenibacillus shenyangensis sp. nov., a bioflocculant-producing species isolated from soil under a peach tree. Int J Syst Evol Microbiol 65: 220–224 [CrossRef] [PubMed].
    [Google Scholar]
  16. Jin H. J., Zhou Y. G., Liu H. C., Chen S. F.. ( 2011b;). Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. Int J Syst Evol Microbiol 61: 1350–1355 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kämpfer P., Falsen E., Lodders N., Martin K., Kassmannhuber J., Busse H.-J.. ( 2012;). Paenibacillus chartarius sp. nov., isolated from a paper mill. Int J Syst Evol Microbiol 62: 1342–1347 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S. T.. ( 2005;). Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43: 152–157 [PubMed].
    [Google Scholar]
  19. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kim J. M., Lee S. H., Lee S. H., Choi E. J., Jeon C. O.. ( 2013;). Paenibacillus hordei sp. nov., isolated from naked barley in Korea. Antonie van Leeuwenhoek 103: 3–9 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution Cambridge., Cambridge: University Press;. [CrossRef].
    [Google Scholar]
  22. Kittiwongwattana C., Thawai C.. ( 2015;). Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 65: 107–112 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kouker G., Jaeger K.-E.. ( 1987;). Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53: 211–213 [PubMed].
    [Google Scholar]
  24. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–176. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  25. Liu Y., Liu L., Qiu F., Schumann P., Shi Y., Zou Y., Zhang X., Song W.. ( 2010;). Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60: 1266–1270 [CrossRef] [PubMed].
    [Google Scholar]
  26. Logan N. A., Berge O., Bishop A. H., Busse H-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59: 2114–2121 [CrossRef] [PubMed].
    [Google Scholar]
  27. Ludwig W., Schleifer K. H., Whitman W. B.. ( 2009;). Family IV. Paenibacillaceae fam. nov.. In Bergey's Manual of Systematic Bacteriology, pp. 269–327. Edited by Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. -H., Whitman W. B..vol. 3, 2nd edn.., New York: Springer;.
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  29. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  30. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  31. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  32. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477 [PubMed].
    [Google Scholar]
  33. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. ( 1997a;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47: 289–298 [CrossRef] [PubMed].
    [Google Scholar]
  34. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. ( 1997b;). Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov.. Int J Syst Bacteriol 47: 299–306 [CrossRef] [PubMed].
    [Google Scholar]
  35. Skerman V. B. D.. ( 1967;). A Guide to the Identification of the Genera of Bacteria, 2nd edn., Baltimore: Williams & Wilkins;.
    [Google Scholar]
  36. Slepecky R. A., Hemphill H. E.. ( 1992;). The genus Bacillus – nonmedical. . In The Prokaryotes, pp. 1663–1696. Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H.. New York: Springer;.
    [Google Scholar]
  37. Sukweenadhi J., Kim Y. J., Lee K. J., Koh S. C., Hoang V. A., Nguyen N. L., Yang D. C.. ( 2014;). Paenibacillus yonginensis sp. nov., a potential plant growth promoting bacterium isolated from humus soil of Yongin forest. Antonie van Leeuwenhoek 106: 935–945 [CrossRef] [PubMed].
    [Google Scholar]
  38. Taibi G., Schiavo M. R., Gueli M. C., Rindina P. C., Muratore R., Nicotra C. M. A.. ( 2000;). Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 745: 431–437 [CrossRef] [PubMed].
    [Google Scholar]
  39. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: Molecular evolutionary genetics analysis (mega) software version 4.0.. Mol Biol Evol 24: 1596–1599 [CrossRef] [PubMed].
    [Google Scholar]
  40. Tang Q. Y., Yang N., Wang J., Xie Y. Q., Ren B., Zhou Y. G., Gu M. Y., Mao J., Li W. J., other authors. ( 2011;). Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol 61: 2167–2172 [CrossRef] [PubMed].
    [Google Scholar]
  41. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T.. ( 2004;). Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56: 375–382 [CrossRef] [PubMed].
    [Google Scholar]
  42. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  43. Wang L., Baek S. H., Cui Y., Lee H. G., Lee S. T.. ( 2012;). Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 62: 1284–1288 [CrossRef] [PubMed].
    [Google Scholar]
  44. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  45. Weon H. Y., Kim B. Y., Joa J. H., Son J. A., Song M. H., Kwon S. W., Go S. J., Yoon S. H.. ( 2008;). Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 58: 93–96 [CrossRef] [PubMed].
    [Google Scholar]
  46. Yao R., Wang R., Wang D., Su J., Zheng S., Wang G.. ( 2014;). Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 64: 805–811 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000521
Loading
/content/journal/ijsem/10.1099/ijsem.0.000521
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error