1887

Abstract

A novel Gram-staining-positive, aerobic, endospore-forming, rod-shaped bacterial strain, YN2, was isolated from ripened Pu'er tea. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain represented a novel species of the genus . The strains most closely related to strain YN2 were JCM 18268 and JCM 16352, with 16S rRNA similarities of 98.6 and 95.5 %, respectively. Chemotaxonomic data supported the affiliation of the new isolate to the genus , including MK-7 as the major menaquinone, DNA G+C content of 51 mol%, cell-wall type A1γ (-diaminopimelic acid as the diagnostic diamino acid) and anteiso-C and iso-C as the major fatty acids. Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine and phospholipid. Strain YN2 could be differentiated from recognized species of the genus based on phenotypic characteristics, chemotaxonomic differences, phylogenetic analysis and DNA–DNA hybridization data. On the basis of evidence from this polyphasic study, sp. nov., is proposed, with strain YN2 ( = CGMCC 1.12968 = JCM 30953) as the type strain.

Erratum
This article contains a correction applying to the following content:
sp. nov., isolated from Pu’er tea
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000496
2015-11-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3806.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000496&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D.. ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253–260 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baik K. S., Lim C. H., Choe H. N., Kim E. M., Seong C. N.. ( 2011;). Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 61: 529–534 [CrossRef] [PubMed].
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  4. Doetsch R.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General and Molecular Bacteriology, pp. 21–23. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  5. Dong X.-Z., Cai M.-Y.. ( 2001;). Determinative Manual for Routine Bacteriology Beijing: Scientific Press;.
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  7. Glaeser S. P., Falsen E., Busse H. J., Kämpfer P.. ( 2013;). Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 63: 777–782 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gregersen T.. ( 1978;). Rapid method for distinction of gram-negative from gram-postive bacteria. Eur J Appl Microbiol Biotechnol 5: 123–127 [CrossRef].
    [Google Scholar]
  9. Huß V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  10. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolismvol. 3, pp. 21–132. Edited by Munro H. N.. New York: Academic Press; [CrossRef].
    [Google Scholar]
  11. Kim B. C., Jeong W. J., Kim Y., Oh H. W., Kim H., Park D. S., Park H. M., Bae K. S.. ( 2009;). Paenibacillus pueri sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 59: 1002–1006 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kishore K. H., Begum Z., Pathan A. A. K., Shivaji S.. ( 2010;). Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. Int J Syst Evol Microbiol 60: 1909–1913 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicumi. Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  14. Lechevalier M. P., Lechevalier H. A.. ( 1980;). The chemotaxonomy of actinomycetes. . In Actinomycete Taxonomy (Society for Industrial Microbiology Special Publication no. 6), pp. 227–291. Edited by Dietz A., Thayer D. W.. Arlington, VA: Society for Industrial Microbiology;.
    [Google Scholar]
  15. Lee H. W., Roh S. W., Yim K. J., Shin N. R., Lee J., Whon T. W., Kim J. Y., Hyun D. W., Kim D., Bae J. W.. ( 2013;). Paenibacillus marinisediminis sp. nov., a bacterium isolated from marine sediment. J Microbiol 51: 312–317 [CrossRef] [PubMed].
    [Google Scholar]
  16. Liu Y., Liu L., Qiu F., Schumann P., Shi Y., Zou Y., Zhang X., Song W.. ( 2010;). Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60: 1266–1270 [CrossRef] [PubMed].
    [Google Scholar]
  17. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59: 2114–2121 [CrossRef] [PubMed].
    [Google Scholar]
  18. Ma B., Tromp J., Li M.. ( 2002;). PatternHunter: faster and more sensitive homology search. Bioinformatics 18: 440–445 [CrossRef] [PubMed].
    [Google Scholar]
  19. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  20. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  21. Moon J. C., Jung Y. J., Jung J. H., Jung H. S., Cheong Y. R., Jeon C. O., Lee K. O., Lee S. Y.. ( 2011;). Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 61: 2753–2757 [CrossRef] [PubMed].
    [Google Scholar]
  22. Niu L., Song L., Dong X.. ( 2008;). Proteiniborus ethanoligenes gen. nov., sp. nov., an anaerobic protein-utilizing bacterium. Int J Syst Evol Microbiol 58: 12–16 [CrossRef] [PubMed].
    [Google Scholar]
  23. Oh H. W., Kim B. C., Lee K. H., Kim Y., Park D. S., Park H. M., Bae K. S.. ( 2008;). Paenibacillus camelliae sp. nov., isolated from fermented leaves of Camellia sinensis. J Microbiol 46: 530–534 [CrossRef] [PubMed].
    [Google Scholar]
  24. Priest F. G.. ( 2009;). Genus I. Paenibacillus. . In Bergey's Manual of Systematic Bacteriologyvol. 3, 2nd edn.., pp. 269–296. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B.. New York: Springer;.
    [Google Scholar]
  25. Rivas R., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2005;). Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55: 405–408 [CrossRef] [PubMed].
    [Google Scholar]
  26. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  27. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. ( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47: 289–298 [CrossRef] [PubMed].
    [Google Scholar]
  28. Šmerda J., Sedlácek I., Pácová Z., Durnová E., Smísková A., Havel L.. ( 2005;). Paenibacillus mendelii sp. nov., from surface-sterilized seeds of Pisum sativum L. Int J Syst Evol Microbiol 55: 2351–2354 [CrossRef] [PubMed].
    [Google Scholar]
  29. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526 [PubMed].
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  33. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  34. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, 3rd edn.., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology; [CrossRef].
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  36. Winker S., Woese C. R.. ( 1991;). A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14: 305–310 [CrossRef] [PubMed].
    [Google Scholar]
  37. Zhang J., Wang Z. T., Yu H. M., Ma Y.. ( 2013;). Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. Int J Syst Evol Microbiol 63: 1776–1781 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000496
Loading
/content/journal/ijsem/10.1099/ijsem.0.000496
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error