1887

Abstract

Four novel bacterial strains belonging to the genus were isolated from the surface of a weevil of the family Curculionidae (strain 10y-14), and from bark samples of hybrid poplar,  ×  (strains 6-3, 2-5 and 06C10-3-14), in Puyang, Henan Province, China. Phylogenetic analyses of the 16S rRNA gene and multilocus sequence analysis (MLSA) data showed that the four strains form a distinct cluster in the genus , indicating that they all belong to a single taxon within the genus. DNA–DNA hybridization levels between strain 10y-4 and LAM0618 and DSM 24639 were 58.31 and 53.92 %, respectively. This indicates that the four novel strains represent a species distinct from these two closely related species. The DNA G+C content of the novel strains was 42.1–42.6 %. The major fatty acids were iso-C and anteiso-C.The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown phospholipid and unidentified aminophospholipids. The predominant menaquinones were MK-7 (90 %) and MK-6 (10 %). The major cell-wall amino acids were lysine, alanine, glutamic acid and glycine. On the basis of the MLSA and 16S rRNA gene sequence phylogenetic analyses, DNA–DNA reassociation values, DNA base composition, and biochemical and phenotypic characteristics, the four strains are considered to represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 10y-14 ( = CFCC 11600 = KCTC 33522).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000494
2015-11-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3788.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000494&mimeType=html&fmt=ahah

References

  1. Balboa S., Romalde J. L.. ( 2013;). Multilocus sequence analysis of Vibrio tapetis, the causative agent of Brown Ring Disease: description of Vibrio tapetis subsp. britannicus subsp. nov. Syst Appl Microbiol 36: 183–187 [CrossRef] [PubMed].
    [Google Scholar]
  2. Belikova V. A., Cherevach N. V., Kalakutskii L. V.. ( 1986;). [New species of bacteria in the genus Kurthia – Kurthia sibirica sp. nov.]. Mikrobiologiia 55: 831–835 [PubMed].
    [Google Scholar]
  3. Breed R. S., Murray E. G. D., Smith N. R..), ( 1957;). Bergey's Manual of Determinative Bacteriology, 7th edn.., Baltimore, MD: Williams and Wilkins;.
    [Google Scholar]
  4. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52: 1551–1558 [CrossRef] [PubMed].
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  6. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  7. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  8. Kurth H.. ( 1883;). Ueber Bacterium zopfii, eine neue Bacterienart. Ber Dtsch Bot Ges 23: 97–100.
    [Google Scholar]
  9. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67 [CrossRef].
    [Google Scholar]
  10. Li Y., He W., Wang T., Piao C. G., Guo L. M., Chang J. P., Guo M. W., Xie S. J.. ( 2014;). Acinetobacter qingfengensis sp. nov., isolated from canker bark of Populus × euramericana. Int J Syst Evol Microbiol 64: 1043–1050 [CrossRef] [PubMed].
    [Google Scholar]
  11. Louws F. J., Fulbright D. W., Stephens C. T., de Bruijn F. J.. ( 1994;). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60: 2286–2295 [PubMed].
    [Google Scholar]
  12. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  14. Minnikin D., O'Donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett V.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  15. Moaledj K.. ( 1986;). Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Methods 5: 303–310 [CrossRef].
    [Google Scholar]
  16. Ren L., Zhu B. Q., Zhang Y. B., Wang H. Y., Li C. Y., Su Y. H., Ba C. F.. ( 2004;). The research of applying Primer Premier 5.0 to design PCR primer. J Jinzhou Med Col 25: 43–46.
    [Google Scholar]
  17. Roux V., El Karkouri K., Lagier J. C., Robert C., Raoult D.. ( 2012;). Non-contiguous finished genome sequence and description of Kurthia massiliensis sp. nov. Stand Genomic Sci 7: 221–232 [CrossRef] [PubMed].
    [Google Scholar]
  18. Roux V., Lagier J. C., Gorlas A., Robert C., Raoult D.. ( 2014;). Non-contiguous finished genome sequence and description of Kurthia senegalensis sp. nov. Stand Genomic Sci 9: 1319–1330 [CrossRef] [PubMed].
    [Google Scholar]
  19. Ruan Z., Wang Y., Song J., Jiang S., Wang H., Li Y., Zhao B., Jiang R., Zhao B.. ( 2014;). Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int J Syst Evol Microbiol 64: 518–521 [CrossRef] [PubMed].
    [Google Scholar]
  20. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  21. Shaw S., Keddie R. M.. ( 1983;). A numerical taxonomic study of the genus Kurthia with a revised description of Kurthia zopfii and a description of Kurthia gibsonii sp. nov. Syst Appl Microbiol 4: 253–276 [CrossRef] [PubMed].
    [Google Scholar]
  22. Shirling E. T., Gottlieb D.. ( 1966;). Method for characterization of Streptomyces species. Int J Syst Evol Microbiol 16: 313–340.
    [Google Scholar]
  23. Stern M. J., Ames G. F., Smith N. H., Robinson E. C., Higgins C. F.. ( 1984;). Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37: 1015–1026 [CrossRef] [PubMed].
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  26. Tindall B. J.. ( 1989;). Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum. FEMS Microbiol Lett 60: 251–254 [CrossRef].
    [Google Scholar]
  27. Trevisan V.. ( 1885;). Caratteri di alcuni nuovi generi di Batteriacee. Atti della Accademia Fisio-Medico-Statistica in Milano. Series 4: 92–107.
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  29. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  30. West M., Burdash N. M., Freimuth F.. ( 1977;). Simplified silver-plating stain for flagella. J Clin Microbiol 6: 414–419 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000494
Loading
/content/journal/ijsem/10.1099/ijsem.0.000494
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error