1887

Abstract

There are two major centres of genetic diversification of common bean ( L.), the Mesoamerican and the Andean, and the legume is capable of establishing nitrogen-fixing symbioses with several rhizobia; seems to be the dominant species in both centres. Another genetic pool of common bean, in Peru and Ecuador, is receiving increasing attention, and studies of microsymbionts from the region can help to increase our knowledge about coevolution of this symbiosis. We have previously reported several putative new lineages from this region and here present data indicating that strains belonging to one of them, PEL4, represent a novel species. Based on 16S rRNA gene sequence phylogeny, PEL4 strains are positioned in the // clade, but show unique properties in several morphological, physiological and biochemical analyses, as well as in BOX-PCR profiles ( < 75 % similarity with related species). PEL4 strains also differed from related species based on multilocus sequence analysis of three housekeeping genes (, and ). Nucleotide identities of the three concatenated genes between PEL4 strains and related species ranged from 91.8 to 94.2 %, being highest with . DNA–DNA hybridization ( < 47 % DNA relatedness) and average nucleotide identity values of the whole genomes ( < 90.2 %) also supported the novel species status. The PEL4 strains were effective in nodulating and fixing N with common beans. The data supported the view that PEL4 strains represent a novel species, sp. nov. The type strain is CNPSo 671 ( = UMR 1450 = PIMAMPIRS I 5 = LMG 27578).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000392
2015-09-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3162.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000392&mimeType=html&fmt=ahah

References

  1. Aguilar O.M. , López M.V. , Riccillo P.M. , González R.A. , Pagano M. , Grasso D.H. , Pühler A. , Favelukes G. . ( 1998;). Prevalence of the Rhizobium etli-like allele in genes coding for 16S rRNA among the indigenous rhizobial populations found associated with wild beans from the Southern Andes in Argentina. Appl Environ Microbiol 64: 3520–3524 [PubMed].
    [Google Scholar]
  2. Aguilar O.M. , Riva O. , Peltzer E. . ( 2004;). Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci U S A 101: 13548–13553 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bernal G. , Graham P.H. . ( 2001;). Diversity in the rhizobia associated with Phaseolus vulgaris L. in Ecuador, and comparisons with Mexican bean rhizobia. Can J Microbiol 47: 526–534 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bitocchi E. , Nanni L. , Bellucci E. , Rossi M. , Giardini A. , Zeuli P.S. , Logozzo G. , Stougaard J. , McClean P. , other authors . ( 2012;). Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci U S A 109: E788–E796 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bitocchi E. , Bellucci E. , Giardini A. , Rau D. , Rodriguez M. , Biagetti E. , Santilocchi R. , Spagnoletti Zeuli P. , Gioia T. , other authors . ( 2013;). Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197: 300–313 [CrossRef] [PubMed].
    [Google Scholar]
  6. CGIAR (Consultative Group on International Agricultural Research) ( 2012;). Common bean. http://www.cgiar.org/our-research/crop-factsheets/beans/ . .
  7. Dall'Agnol R.F. , Ribeiro R.A. , Ormeño-Orrillo E. , Rogel M.A. , Delamuta J.R.M. , Andrade D.S. , Martínez-Romero E. , Hungria M. . ( 2013;). Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63: 4167–4173 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dall'Agnol R.F. , Ribeiro R.A. , Delamuta J.R.M. , Ormeño-Orrillo E. , Rogel M.A. , Andrade D.S. , Martínez-Romero E. , Hungria M. . ( 2014;). Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 64: 3222–3229 [CrossRef] [PubMed].
    [Google Scholar]
  9. Debouck D.G. . ( 1986;). Primary diversification of Phaseolus in the Americas: three centers?. Plant Genet Resour Newsl 67: 2–8.
    [Google Scholar]
  10. Debouck D.G. , Toro O. , Paredes M. , Johnson W.C. , Gepts P. . ( 1993;). Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabacea) in northwestern South America. Econ Bot 47: 408–423 [CrossRef].
    [Google Scholar]
  11. Delamuta J.R.M. , Ribeiro R.A. , Ormeño-Orrillo E. , Melo I.S. , Martínez-Romero E. , Hungria M. . ( 2013;). Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 63: 3342–3351 [CrossRef] [PubMed].
    [Google Scholar]
  12. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  13. Felsenstein J. . ( 1985;). Confidence-limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  14. Freyre R. , Ríos R. , Guzmán L. , Debouck D. , Gepts P. . ( 1996;). Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Econ Bot 50: 195–215 [CrossRef].
    [Google Scholar]
  15. Gepts P. . ( 1990;). Biochemical evidence bearing on the domestication of Phaseolus (Fabaceae) beans. Econ Bot 44: (S3), 28–38 [CrossRef].
    [Google Scholar]
  16. Hall T.A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  17. Hungria M. , Andrade D.D.S. , Chueire L.M.D.O. , Probanza A. , Guttierrez-Mañero F.J. , Megías M. . ( 2000;). Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32: 1515–1528 [CrossRef].
    [Google Scholar]
  18. Hungria M. , Chueire L.M.O. , Coca R.G. , Megías M. . ( 2001;). Preliminary characterization of fast growing strains rhizobial isolated from soybean nodules in Brazil. Soil Biol Biochem 33: 1349–1361 [CrossRef].
    [Google Scholar]
  19. Kami J. , Velásquez V.B. , Debouck D.G. , Gepts P. . ( 1995;). Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus, vulgaris . Proc Natl Acad Sci U S A 92: 1101–1104 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kaplan L. . ( 1965;). Archeology and domestication in American Phaseolus (beans). Econ Bot 19: 358–368 [CrossRef].
    [Google Scholar]
  21. Kaplan L. . ( 1981;). What is the origin of the common bean?. Econ Bot 35: 240–254 [CrossRef].
    [Google Scholar]
  22. Kaschuk G. , Hungria M. , Andrade D.S. , Campo R.J. . ( 2006;). Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl Soil Ecol 32: 210–220 [CrossRef].
    [Google Scholar]
  23. Kim M. , Oh H.-S. , Park S.-C. , Chun J. . ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  25. Konstantinidis K.T. , Ramette A. , Tiedje J.M. . ( 2006;). Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72: 7286–7293 [CrossRef] [PubMed].
    [Google Scholar]
  26. López-Guerrero M.G. , Ormeño-Orrillo E. , Velázquez E. , Rogel M.A. , Acosta J.L. , Gónzalez V. , Martínez J. , Martínez-Romero E. . ( 2012;). Rhizobium etli taxonomy revised with novel genomic data and analyses. Syst Appl Microbiol 35: 353–358 [CrossRef] [PubMed].
    [Google Scholar]
  27. Martínez-Romero E. , Segovia L. , Mercante F.M. , Franco A.A. , Graham P. , Pardo M.A. . ( 1991;). Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41: 417–426 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ormeño-Orrillo E. , Martínez-Romero E. . ( 2013;). Phenotypic tests in Rhizobium species description: an opinion and (a sympatric speciation) hypothesis. Syst Appl Microbiol 36: 145–147 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ribeiro R.A. , Barcellos F.G. , Thompson F.L. , Hungria M. . ( 2009;). Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res Microbiol 160: 297–306 [CrossRef] [PubMed].
    [Google Scholar]
  30. Ribeiro R.A. , Rogel M.A. , López-López A. , Ormeño-Orrillo E. , Barcellos F.G. , Martínez J. , Thompson F.L. , Martínez-Romero E. , Hungria M. . ( 2012;). Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62: 1179–1184 [CrossRef] [PubMed].
    [Google Scholar]
  31. Ribeiro R.A. , Ormeño-Orrillo E. , Dall'Agnol R.F. , Graham P.H. , Martínez-Romero E. , Hungria M. . ( 2013;). Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Res Microbiol 164: 740–748 [CrossRef] [PubMed].
    [Google Scholar]
  32. Richter M. , Rosselló-Móra R. . ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  33. Rodiño P.A. , Santalla M. , Ron A.M. , Drevon J.-J. . ( 2010;). Co-evolution and migration of bean and rhizobia in Europe. Sustain Agric Rev 3: 171–188.[CrossRef]
    [Google Scholar]
  34. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
    [Google Scholar]
  35. Segovia L. , Young J.P. , Martínez-Romero E. . ( 1993;). Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43: 374–377 [CrossRef] [PubMed].
    [Google Scholar]
  36. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tighe S.W. , de Lajudie P. , Dipietro K. , Lindström K. , Nick G. , Jarvis B.D.W. . ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50: 787–801 [CrossRef] [PubMed].
    [Google Scholar]
  38. Tindall B.J. , Rosselló-Móra R. , Busse H.J. , Ludwig W. , Kämpfer P. . ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60: 249–266 [CrossRef] [PubMed].
    [Google Scholar]
  39. Vincent J.M. . ( 1970;). A Manual for the Practical Study of the Root-Nodule Bacteria Oxford: Blackwell, Scientific; 164 p. (IBP Handbook, vol.15).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000392
Loading
/content/journal/ijsem/10.1099/ijsem.0.000392
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error