1887

Abstract

Two novel, Gram-stain-positive, rod-shaped, halotolerent bacteria, strains JG 03 and JG 05 were isolated from the rhizosphere of , an extreme halophyte. Comparative analyses of 16S rRNA gene sequences showed that they were closely related to members of the genus , with sequence similarities of 96.9–99.1 %. The sequence similarity of strains JG 03 and JG 05 with each other was 99.4 %. DNA–DNA hybridization of JG 03 and JG 05 with other species of the genus with validly published names showed reassociation values of 19.8 %–53.4 % and a value of 91.4 % between each other. The peptidoglycan type of both strains was A4α and MK-9 and MK-10 were the predominant menaquinones. The predominant fatty acid in JG 03 was anteiso-C and anteiso-C. However, iso-C, anteiso-C and anteiso-C were the major fatty acids in strain JG 05. The DNA G+C content of strains JG 03 and JG 05 was 70.0 and 70.1 mol%, respectively. In nutrient broth medium both strains grew at NaCl concentrations of up to 15 % (w/v). On the basis of chemotaxonomic characteristics and phylogenetic analyses, strains JG 03 and JG 05 should be affiliated to the genus . Strains JG 03 and JG 05 represent a novel species of the genus for which the name sp. nov. is proposed. The type strain is JG 03 ( = DSM 23187 = IMCC 253).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000391
2015-09-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3137.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000391&mimeType=html&fmt=ahah

References

  1. Baik K.S. , Lim C.H. , Park S.C. , Choe H.N. , Kim H.J. , Kim D. , Lee K.H. , Seong C.N. . ( 2011;). Zhihengliuella aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 61: 1671–1676 [CrossRef] [PubMed].
    [Google Scholar]
  2. Cashion P. , Holder-Franklin M.A. , McCully J. , Franklin M. . ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81: 461–466 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chen Y.G. , Tang S.K. , Zhang Y.Q. , Liu Z.X. , Chen Q.H. , He J.W. , Cui X.L. , Li W.J. . ( 2010;). Zhihengliuella salsuginis sp. nov., a moderately halophilic actinobacterium from a subterranean brine. Extremophiles 14: 397–402 [CrossRef] [PubMed].
    [Google Scholar]
  4. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  5. Döbereiner J . ( 2003;). Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. . In Methods in Applied Soil Microbiology and Biochemistry, pp. 134–141 . Edited by K. Alef & P. Nannipieri, London: Academic Press;.
    [Google Scholar]
  6. Felsenstein J. . ( 1985;). Confidence limits on phylogenesis: An approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  7. Gontia I. , Kavita K. , Schmid M. , Hartmann A. , Jha B. . ( 2011;). Brachybacterium saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth-promoting potential. Int J Syst Evol Microbiol 61: 2799–2804 [PubMed].[CrossRef]
    [Google Scholar]
  8. Hamada M. , Shibata C. , Tamura T. , Suzuki K. . ( 2013;). Zhihengliuella flava sp. nov., an actinobacterium isolated from sea sediment, and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 63: 4760–4764 [CrossRef] [PubMed].
    [Google Scholar]
  9. Huss V.A. , Festl H. , Schleifer K.H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  10. Jha B. , Gontia I. , Hartmann A. . ( 2012;). The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant-growth promoting potential. Plant & Soil 356: 265–277 [CrossRef].
    [Google Scholar]
  11. Kirchhof G. , Eckert B. , Stoffels, M., Baldani, J. I., Reis, V. M., & Hartmann A. . ( 2001;). Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51: 157–168 [CrossRef].
    [Google Scholar]
  12. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  13. Näther D.J. , Rachel R. , Wanner G. , Wirth R. . ( 2006;). Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. J Bacteriol 188: 6915–6923 [CrossRef] [PubMed].
    [Google Scholar]
  14. Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406–425 [PubMed].
    [Google Scholar]
  15. Sambrook J. , Russell D.W. . ( 2001;). Molecular Cloning , 3rd edn.., Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  16. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;.
  17. Schmid M. , Iversen C. , Gontia I. , Stephan R. , Hofmann A. , Hartmann A. , Jha B. , Eberl L. , Riedel K. , Lehner A. . ( 2009;). Evidence for a plant-associated natural habitat for Cronobacter spp. Res Microbiol 160: 608–614 [CrossRef] [PubMed].
    [Google Scholar]
  18. Schumann P. . ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129.[CrossRef]
    [Google Scholar]
  19. Stackebrandt E. , Goebel B.M. . ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  20. Staneck J.L. , Roberts G.D. . ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28: 226–231 [PubMed].
    [Google Scholar]
  21. Tamaoka J. , Komagata K. . ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromato graphy. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  22. Tamura K. , Nei M. , Kumar S. . ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101: 11030–11035 [CrossRef] [PubMed].
    [Google Scholar]
  23. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  24. Tang S.K. , Wang Y. , Chen Y. , Lou K. , Cao L.-L. , Xu L.-H. , Li W.-J. . ( 2009;). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 59: 2025–2032 [CrossRef] [PubMed].
    [Google Scholar]
  25. Tindall B.J. . ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  26. Tindall B.J. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  27. Tindall B.J. , Sikorski J. , Smibert R.A. , Kreig N.R. . ( 2007;). Phenotypic characterization and the principles of comparative systematics. [CrossRef] In Methods for General and Molecular Microbiology , 3rd edn.., pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. , Schmidt T. M. , Snyder L. R. . Washington DC, USA: American Society for Microbiology;.
    [Google Scholar]
  28. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  29. Weisburg W.G. , Barns S.M. , Pelletier D.A. , Lane D.J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  30. Whittaker P. , Fry F.S. , Curtis S.K. , Al-Khaldi S.F. , Mossoba M.M. , Yurawecz M.P. , Dunkel V.C. . ( 2005;). Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli. J Agric Food Chem 53: 3735–3742 [CrossRef] [PubMed].
    [Google Scholar]
  31. Yumoto I. , Yamazaki K. , Hishinuma M. , Nodasaka Y. , Suemori A. , Nakajima K. , Inoue N. , Kawasaki K. . ( 2001;). Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51: 349–355 [PubMed].[CrossRef]
    [Google Scholar]
  32. Zhang Y.Q. , Schumann P. , Yu L.Y. , Liu H.Y. , Zhang Y.Q. , Xu L.H. , Stackebrandt E. , Jiang C.L. , Li W.J. . ( 2007;). Zhihengliuella halotolerans gen. nov., sp. nov., a novel member of the family Micrococcaceae . Int J Syst Evol Microbiol 57: 1018–1023 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000391
Loading
/content/journal/ijsem/10.1099/ijsem.0.000391
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error