The extremely diverse genus is the largest among the lactic acid bacteria, with over 145 recognized species. In this work, which to our knowledge is the largest comparative phylogenomics study of a single genus to date, 12 genomes of strains were subjected to an array of whole-genome and single-marker phylogenetic approaches, to investigate the case for extracting subgeneric groups and to determine whether a single congruent phylogeny could be identified. We conclude that GroEL is a more robust single-gene phylogenetic marker for the genus than the 16S rRNA gene, when no whole-genome information is available. Significant incongruence was found, both within a set of trees based on 141 core proteins and within those phylogenies based on numbers of orthologues, concatenated RNA polymerase subunits and single gene/protein markers. This is possibly due to different evolutionary rates, hidden paralogies or horizontal gene transfer. Such phylogenetic ambiguities are efficiently visualized with cluster-networks. Although the genus contains some highly unstable taxa, four subgeneric groups were distinguished. Qualitative and quantitative gene analysis of these groups resulted in three findings: there is a relatively small number of group-specific proteins, the majority of which are poorly characterized; major groupings are functionally better distinguishable by absent genes rather than gained/retained genes; and, finally, a gene cluster possibly involved in purine metabolism is uniquely present in four lactobacilli associated with meat. In conclusion, because of either significantly different branching patterns or the availability of too few members, three of the four identified groups could not serve as the basis for identifying candidate novel genera within the current genus. We therefore suggest targeted sequencing of key taxonomic species identified here, which are likely to add sufficient depth for a future reclassification, followed by phylogenomic analysis involving the core proteins identified here. This will ideally be combined with phenotypic data using a polyphasic approach.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altermann, E., Russell, W. M., Azcarate-Peril, M. A., Barrangou, R., Buck, B. L., McAuliffe, O., Souther, N., Dobson, A., Duong, T. & other authors(2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102, 3906–3912.[CrossRef] [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  3. Berger, B., Pridmore, R. D., Barretto, C., Delmas-Julien, F., Schreiber, K., Arigoni, F. & Brussow, H.(2007). Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J Bacteriol 189, 1311–1321.[CrossRef] [Google Scholar]
  4. Bininda-Emonds, O. R.(2004). The evolution of supertrees. Trends Ecol Evol 19, 315–322.[CrossRef] [Google Scholar]
  5. Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S. D., Kulakauskas, S., Lapidus, A., Goltsman, E., Mazur, M. & other authors(2004). Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22, 1554–1558.[CrossRef] [Google Scholar]
  6. Bringel, F., Castioni, A., Olukoya, D. K., Felis, G. E., Torriani, S. & Dellaglio, F.(2005).Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Microbiol 55, 1629–1634.[CrossRef] [Google Scholar]
  7. Callanan, M., Kaleta, P., O'Callaghan, J., O'Sullivan, O., Jordan, K., McAuliffe, O., Sangrador-Vegas, A., Slattery, L., Fitzgerald, G. F. & other authors(2008). Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190, 727–735.[CrossRef] [Google Scholar]
  8. Canchaya, C., Claesson, M. J., Fitzgerald, G. F., van Sinderen, D. & O'Toole, P. W.(2006). Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology 152, 3185–3196.[CrossRef] [Google Scholar]
  9. Chaillou, S., Champomier-Verges, M. C., Cornet, M., Crutz-Le Coq, A. M., Dudez, A. M., Martin, V., Beaufils, S., Darbon-Rongere, E., Bossy, R. & other authors(2005). The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23, 1527–1533.[CrossRef] [Google Scholar]
  10. Choi, I. G. & Kim, S. H.(2007). Global extent of horizontal gene transfer. Proc Natl Acad Sci U S A 104, 4489–4494.[CrossRef] [Google Scholar]
  11. Claesson, M. J., Li, Y., Leahy, S., Canchaya, C., van Pijkeren, J. P., Cerdeno-Tarraga, A. M., Parkhill, J., Flynn, S., O'Sullivan, G. C. & other authors(2006). Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A 103, 6718–6723.[CrossRef] [Google Scholar]
  12. Creevey, C. J. & McInerney, J. O.(2005). Clann: investigating phylogenetic information through supertree analyses. Bioinformatics 21, 390–392.[CrossRef] [Google Scholar]
  13. Dagan, T. & Martin, W.(2006). The tree of one percent. Genome Biol 7, 118[CrossRef] [Google Scholar]
  14. Dellaglio, F. & Felis, G. E.(2005). Taxonomy of lactobacilli and bifidobacteria. In Probiotics and Prebiotics: Scientific Aspects, pp. 25–49. Edited by G. W. Tannock. Wymondham, UK: Caister Academic.
  15. Delsuc, F., Brinkmann, H. & Philippe, H.(2005). Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6, 361–375. [Google Scholar]
  16. Edgar, R. C.(2004).muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.[CrossRef] [Google Scholar]
  17. Eisen, J. A. & Fraser, C. M.(2003). Phylogenomics: intersection of evolution and genomics. Science 300, 1706–1707.[CrossRef] [Google Scholar]
  18. Eisen, J. A. & Hanawalt, P. C.(1999). A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res 435, 171–213.[CrossRef] [Google Scholar]
  19. Enright, A. J., Van Dongen, S. & Ouzounis, C. A.(2002). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30, 1575–1584.[CrossRef] [Google Scholar]
  20. Euzéby, J. P.(1997). List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47, 590–592. http://www.bacterio.cict.fr/index.html[CrossRef] [Google Scholar]
  21. Felis, G. E. & Dellaglio, F.(2007). Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 8, 44–61. [Google Scholar]
  22. Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye, T., Feil, E. J., Stackebrandt, E., Van de Peer, Y., Vandamme, P. & other authors(2005). Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3, 733–739.[CrossRef] [Google Scholar]
  23. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. & Tiedje, J. M.(2007). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57, 81–91.[CrossRef] [Google Scholar]
  24. Guindon, S. & Gascuel, O.(2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef] [Google Scholar]
  25. Hill, J. E., Penny, S. L., Crowell, K. G., Goh, S. H. & Hemmingsen, S. M.(2004). cpnDB: a chaperonin sequence database. Genome Res 14, 1669–1675.[CrossRef] [Google Scholar]
  26. Holland, B. R., Huber, K. T., Moulton, V. & Lockhart, P. J.(2004). Using consensus networks to visualize contradictory evidence for species phylogeny. Mol Biol Evol 21, 1459–1461.[CrossRef] [Google Scholar]
  27. Huson, D. H. & Bryant, D.(2006). Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23, 254–267. [Google Scholar]
  28. Huson, D. H., Dezulian, T., Klopper, T. & Steel, M. A.(2004). Phylogenetic super-networks from partial trees. IEEE/ACM Trans Comput Biol Bioinform 1, 151–158.[CrossRef] [Google Scholar]
  29. Jeffroy, O., Brinkmann, H., Delsuc, F. & Philippe, H.(2006). Phylogenomics: the beginning of incongruence? Trends Genet 22, 225–231.[CrossRef] [Google Scholar]
  30. Jian, W., Zhu, L. & Dong, X.(2001). New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int J Syst Evol Microbiol 51, 1633–1638.[CrossRef] [Google Scholar]
  31. Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & McInerney, J. O.(2006). Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6, 29[CrossRef] [Google Scholar]
  32. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M. & other authors(2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100, 1990–1995.[CrossRef] [Google Scholar]
  33. Konstantinidis, K. T., Ramette, A. & Tiedje, J. M.(2006). The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361, 1929–1940.[CrossRef] [Google Scholar]
  34. Korbel, J. O., Snel, B., Huynen, M. A. & Bork, P.(2002).shot: a web server for the construction of genome phylogenies. Trends Genet 18, 158–162.[CrossRef] [Google Scholar]
  35. Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessieres, P., Bolotin, A. & other authors(1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef] [Google Scholar]
  36. Liolios, K., Mavromatis, K., Tavernarakis, N. & Kyrpides, N. C.(2008). The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 36, D475–D479.[CrossRef] [Google Scholar]
  37. Ludwig, W. & Schleifer, K. H.(1999). Phylogeny of bacteria beyond the 16S rRNA standard. ASM News 65, 752–757. [Google Scholar]
  38. Makarova, K. S. & Koonin, E. V.(2007). Evolutionary genomics of lactic acid bacteria. J Bacteriol 189, 1199–1208.[CrossRef] [Google Scholar]
  39. Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V. & other authors(2006). Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103, 15611–15616.[CrossRef] [Google Scholar]
  40. Ochman, H.(2005). Genomes on the shrink. Proc Natl Acad Sci U S A 102, 11959–11960.[CrossRef] [Google Scholar]
  41. Paulsen, I. T., Banerjei, L., Myers, G. S., Nelson, K. E., Seshadri, R., Read, T. D., Fouts, D. E., Eisen, J. A., Gill, S. R. & other authors(2003). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299, 2071–2074.[CrossRef] [Google Scholar]
  42. Pearson, W. R. & Lipman, D. J.(1988). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef] [Google Scholar]
  43. Philippe, H. & Douady, C. J.(2003). Horizontal gene transfer and phylogenetics. Curr Opin Microbiol 6, 498–505.[CrossRef] [Google Scholar]
  44. Pridmore, R. D., Berger, B., Desiere, F., Vilanova, D., Barretto, C., Pittet, A. C., Zwahlen, M. C., Rouvet, M., Altermann, E. & other authors(2004). The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 101, 2512–2517.[CrossRef] [Google Scholar]
  45. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R. & Lopez, R.(2005). InterProScan: protein domains identifier. Nucleic Acids Res 33, W116–W120 [Google Scholar]
  46. Retief, J. D.(2000). Phylogenetic analysis using phylip. Methods Mol Biol 132, 243–258. [Google Scholar]
  47. Robinson, D. R. & Foulds, L. R.(1981). Comparison of phylogenetic trees. Math Biosci 53, 131–147.[CrossRef] [Google Scholar]
  48. Rosselló-Mora, R. & Amann, R.(2001). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef] [Google Scholar]
  49. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  50. Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L. & other authors(2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41[CrossRef] [Google Scholar]
  51. van de Guchte, M., Penaud, S., Grimaldi, C., Barbe, V., Bryson, K., Nicolas, P., Robert, C., Oztas, S., Mangenot, S. & other authors(2006). The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 103, 9274–9279.[CrossRef] [Google Scholar]
  52. Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K. & Swings, J.(1996). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60, 407–438. [Google Scholar]
  53. Ventura, M., Canchaya, C., Zink, R., Fitzgerald, G. F. & van Sinderen, D.(2004). Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: genetic, transcriptional, and phylogenetic analyses. Appl Environ Microbiol 70, 6197–6209.[CrossRef] [Google Scholar]

Data & Media loading...


Supernetwork based on a combination of 141 separate protein trees. [PDF](18 KB)


[PDF file of Supplementary Tables S1-S3](20 KB)


Breakdown of all protein collections in Table 1, group-specific present and absent proteins, -specific proteins and meat-specific proteins into protein locus tags, functional annotation and low-level COG categories. [Excel file](422 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error