1887

Abstract

It is proposed that be reclassified as comb. nov. on the basis of phylogenetic position, DNA G+C content and physiological traits. Phylogenetic analyses based on 16S rRNA gene sequences from an extensive range of taxa within clostridial rRNA subcluster XIVa grouped together with isolates of the genus , though this species was genetically distinct from the extant species examined. The DNA G+C content of was originally erroneously reported as 28 mol%. However the genome sequence of the type strain of , strain B316, and HPLC analysis estimate the DNA G+C content as 40 mol%, which is within the range reported for strains of . was distinguishable from other species of the genus as the 16S rRNA gene from strain B316 shared less than 97 % sequence similarity with sequences from the type strains of species. was also able to convert linoleic acid to stearic acid, in contrast to other species of . Physiological characteristics, including carbon source utilization, volatile fatty acid production and proteinase activities, were assessed for a panel of representative strains of the genera and and . These data, together with the phylogenetic analyses, support the reclassification of as a separate species within the genus , comb. nov. (type strain B316=ATCC 51982=DSM 14932).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65845-0
2008-09-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/9/2041.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65845-0&mimeType=html&fmt=ahah

References

  1. Attwood, G. T. & Reilly, K. ( 1995; ). Identification of proteolytic rumen bacteria isolated from New Zealand cattle. J Appl Bacteriol 79, 22–29.[CrossRef]
    [Google Scholar]
  2. Attwood, G. T. & Reilly, K. ( 1996; ). Characterization of proteolytic activities of rumen bacterial isolates from forage-fed cattle. J Appl Bacteriol 81, 545–552.
    [Google Scholar]
  3. Attwood, G. T., Reilly, K. & Patel, B. K. ( 1996; ). Clostridium proteoclasticum sp. nov., a novel proteolytic bacterium from the bovine rumen. Int J Syst Bacteriol 46, 753–758.[CrossRef]
    [Google Scholar]
  4. Bryant, M. P. ( 1986; ). Genus IV. Butryrivibrio Bryant and Small 1956, 18, emend. Moore, Johnson and Holdeman 1976, 241. In Bergey's Manual of Systematic Bacteriology, pp. 1376–1379. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore, MD: Williams and Wilkins.
  5. Bryant, M. P. & Small, N. ( 1956; ). The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J Bacteriol 72, 16–21.
    [Google Scholar]
  6. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & Tiedje, J. M. ( 2007; ). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, D169–D172.[CrossRef]
    [Google Scholar]
  7. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J. A. ( 1994; ). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812–826.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  9. Forster, R. J., Teather, R. M., Gong, J. & Deng, S. J. ( 1996; ). 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer. Lett Appl Microbiol 23, 218–222.[CrossRef]
    [Google Scholar]
  10. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  11. Kopečný, J., Marinšek-Logar, R. & Kobayashi, Y. ( 2001; ). Phenotypic and genetic data supporting reclassification of Butyrivibrio fibrisolvens isolates. Folia Microbiol (Praha) 46, 45–48.[CrossRef]
    [Google Scholar]
  12. Kopečný, J., Zorec, M., Mrázek, J., Kobayashi, Y. & Marinšek-Logar, R. ( 2003; ). Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol 53, 201–209.[CrossRef]
    [Google Scholar]
  13. Leedle, J. A. & Hespell, R. B. ( 1980; ). Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl Environ Microbiol 39, 709–719.
    [Google Scholar]
  14. Moore, W. E. C., Johnson, J. L. & Holdeman, L. V. ( 1976; ). Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int J Syst Bacteriol 26, 238–252.[CrossRef]
    [Google Scholar]
  15. Mrázek, J. & Kopečný, J. ( 2001; ). Development of competitive PCR for detection of Butyrivibrio fibrisolvens in the rumen. Folia Microbiol (Praha) 46, 63–65.[CrossRef]
    [Google Scholar]
  16. Paillard, D., McKain, N., Chaudhary, L. C., Walker, N. D., Pizette, F., Koppova, I., McEwan, N. R., Kopecný, J., Vercoe, P. E. & other authors ( 2007; ). Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie van Leeuwenhoek 91, 417–422.[CrossRef]
    [Google Scholar]
  17. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  18. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  19. Staley, J. T. ( 2006; ). The bacterial species dilemma and the genomic-phylogenetic species concept. Philos Trans R Soc Lond B Biol Sci 361, 1899–1909.[CrossRef]
    [Google Scholar]
  20. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  21. Wallace, R. J., Chaudhary, L. C., McKain, N., McEwan, N. R., Richardson, A. J., Vercoe, P. E., Walker, N. D. & Paillard, D. ( 2006; ). Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol Lett 265, 195–201.[CrossRef]
    [Google Scholar]
  22. Willems, A., Amat-Marco, M. & Collins, M. D. ( 1996; ). Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylum of the gram-positive bacteria. Int J Syst Bacteriol 46, 195–199.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65845-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65845-0
Loading

Data & Media loading...

Supplements

Combined file [ PDF] 69 KB

PDF

Multiple sequence alignment of partial 16S rRNA genes from strains of the genera , , , and generated in CLUSTAL W. [ PDF] 136 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error