1887

Abstract

An extracellular polysaccharide-producing bacterium, strain SCK, was isolated from a soil sample taken from Kameino, Fujisawa, Japan. The isolate was Gram-negative and cells were non-motile, irregular-shaped rods that grew optimally at 25 °C and grew between pH 5 and 8. Strain SCK contained MK-7 as the major isoprenoid quinone, iso-C and C 7 and/or iso-C 2-OH as the major fatty acids and sphingolipids, with d-17 : 0 as the main dihydrosphingosine. Flexirubin-type pigments were also present. The DNA G+C content was 43.7 mol%. On the basis of 16S rRNA gene sequence analysis, strain SCK was shown to belong to the genus . The 16S rRNA gene sequence similarity between strain SCK and the two type strains of was 93 %. The results of physiological and biochemical tests allowed phenotypic differentiation of the strain from published species. Therefore, strain SCK represents a novel species, for which the name sp. nov. is proposed. The type strain is SCK (=NBRC 102645 =KCTC 22227).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65777-0
2008-09-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/9/2046.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65777-0&mimeType=html&fmt=ahah

References

  1. Aizawa, T., Neilan, A. B., Couperwhite, I., Urai, M., Anzai, H., Iwabuchi, N., Nakajima, M. & Sunairi, M.(2005). Relationship between extracellular polysaccharide and benzene tolerance of Rhodococcus sp. 33. Actinomycetologica 19, 1–6.[CrossRef] [Google Scholar]
  2. Fautz, E. & Reichenbach, H.(1980). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8, 87–91.[CrossRef] [Google Scholar]
  3. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  4. Iwabuchi, N., Sunairi, M., Anzai, H., Nakajima, M. & Harayama, S.(2000). Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol 66, 5073–5077.[CrossRef] [Google Scholar]
  5. Iwabuchi, N., Sunairi, M., Urai, M., Itoh, C., Anzai, H., Nakajima, M. & Harayama, S.(2002). Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68, 2337–2343.[CrossRef] [Google Scholar]
  6. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  7. Kluge, A. G. & Farris, F. S.(1969). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef] [Google Scholar]
  8. Pankratov, T. A., Tindall, B. J., Liesack, W. & Dedysh, S. N.(2007).Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57, 2349–2354.[CrossRef] [Google Scholar]
  9. Ryu, E.(1938). On the Gram-differentiation of bacteria by the simplest method. J Jpn Soc Vet Sci 17, 31 [Google Scholar]
  10. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  11. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  12. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  13. Sunairi, M., Iwabuchi, N., Yoshizawa, Y., Murooka, H., Morisaki, H. & Nakajima, M.(1997). Cell-surface hydrophobicity and scum formation of Rhodococcus rhodochrous strains with different colonial morphologies. J Appl Microbiol 82, 204–210.[CrossRef] [Google Scholar]
  14. Tamura, T. & Hatano, K.(2001). Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and ‘Actinoplanes aurantiacus’ to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol 51, 2119–2125.[CrossRef] [Google Scholar]
  15. Tamura, T., Nakagaito, Y., Nishii, T., Hasegawa, T., Stackebrandt, E. & Yokota, A.(1994). A new genus of the order Actinomycetales, Couchioplanes gen. nov., with descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb. nov. and Couchioplanes caeruleus subsp. azureus subsp. nov. Int J Syst Bacteriol 44, 193–203.[CrossRef] [Google Scholar]
  16. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  17. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  18. Urai, M., Anzai, H., Iwabuchi, N., Sunairi, M. & Nakajima, M.(2002). A novel moisture-absorbing extracellular polysaccharide from Rhodococcus rhodochrous SM-1. Actinomycetologica 16, 26–31.[CrossRef] [Google Scholar]
  19. Urai, M., Anzai, H., Iwabuchi, N., Sunairi, M. & Nakajima, M.(2004). A novel viscous extracellular polysaccharide containing fatty acids from Rhodococcus rhodochrous ATCC 53968. Actinomycetologica 18, 15–17.[CrossRef] [Google Scholar]
  20. Urai, M., Aizawa, T., Anzai, H., Ogihara, J., Iwabuchi, N., Neilan, B., Couperwhite, I., Nakajima, M. & Sunairi, M.(2006a). Structural analysis of an extracellular polysaccharide produced by a benzene tolerant bacterium, Rhodococcus sp. 33. Carbohydr Res 341, 616–623.[CrossRef] [Google Scholar]
  21. Urai, M., Anzai, H., Ogihara, J., Iwabuchi, N., Harayama, S., Sunairi, M. & Nakajima, M.(2006b). Structural analysis of an extracellular polysaccharide produced by Rhodococcus rhodochrous strain S-2. Carbohydr Res 341, 766–775.[CrossRef] [Google Scholar]
  22. Urai, M., Yoshizaki, H., Anzai, H., Ogihara, J., Iwabuchi, N., Harayama, S., Sunairi, M. & Nakajima, M.(2007a). Structural analysis of mucoidan, an acidic extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4. Carbohydr Res 342, 927–932.[CrossRef] [Google Scholar]
  23. Urai, M., Yoshizaki, H., Anzai, H., Ogihara, J., Iwabuchi, N., Harayama, S., Sunairi, M. & Nakajima, M.(2007b). Structural analysis of an acidic, fatty acid ester-bonded extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4. Carbohydr Res 342, 933–942.[CrossRef] [Google Scholar]
  24. Yano, I., Tomiyasu, I. & Yabuuchi, E.(1982). Long chain base composition of strains of three species of Sphingobacterium gen. nov. FEMS Microbiol Lett 15, 303–307.[CrossRef] [Google Scholar]
  25. Zimmermann, J. J., Langer, R. & Cooney, C. L.(1990). Specific plate assay for bacterial heparinase. Appl Environ Microbiol 56, 3593–3594. [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.65777-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65777-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error