A novel obligately chemolithoautotrophic, sulfur-oxidizing bacterium designated strain BDA453 was isolated from a hot spring in Fukushima prefecture, Japan. The cells were short-rod-shaped and possessed an inclusion, a Gram-negative type cell wall and a single polar flagellum. Strain BDA453 grew by sulfur-oxidizing respiration with thiosulfate, elemental sulfur, sulfide and tetrathionate as electron donors and used only carbon dioxide as a carbon source. The optimum growth conditions were 45 °C, pH 6.5 and the absence of NaCl. Analysis of the 16S rRNA gene revealed that the isolate was a member of the and related to the genera and in the family . However, the phylogenetic tree constructed using 16S rRNA gene sequences showed that strain BDA453 was distant from any other known bacteria with sequence similarities of less than 90 %. On the basis of phenotypic features and phylogenetic analysis, strain BDA453 is considered to represent a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is BDA453 (=NBRC 103218=DSM 19618).


Article metrics loading...

Loading full text...

Full text loading...



  1. Adachi, J. & Hasegawa, M.(1995). Improved dating of the human/chimpanzee separation in the mitochondrial DNA tree: heterogeneity among amino acid sites. J Mol Evol 40, 622–628.[CrossRef] [Google Scholar]
  2. Durand, P., Reysenbach, A. L., Prieur, D. & Pace, N.(1993). Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithoautotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 159, 39–44.[CrossRef] [Google Scholar]
  3. Elshahed, M. S., Senko, J. M., Najar, F. Z., Kenton, S. M., Roe, B. A., Dewers, T. A., Spear, J. R. & Krumholz, L. R.(2003). Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69, 5609–5621.[CrossRef] [Google Scholar]
  4. Götz, D., Banta, A., Beveridge, T. J., Rushdi, A. I., Simoneit, B. R. & Reysenbach, A. L.(2002).Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52, 1349–1359.[CrossRef] [Google Scholar]
  5. Grosskopf, R., Janssen, P. H. & Liesack, W.(1998). Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64, 960–969. [Google Scholar]
  6. Hallberg, K. B. & Lindström, E. B.(1994). Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140, 3451–3456.[CrossRef] [Google Scholar]
  7. Hasegawa, M., Kishino, H. & Yano, T.(1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174.[CrossRef] [Google Scholar]
  8. Hattori, S., Kamagata, Y., Hanada, S. & Shoun, H.(2000).Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50, 1601–1609.[CrossRef] [Google Scholar]
  9. Hiraishi, A., Umezawa, T., Yamamoto, H., Kato, K. & Maki, Y.(1999). Changes in quinone profiles of hot spring microbial mats with a thermal gradient. Appl Environ Microbiol 65, 198–205. [Google Scholar]
  10. Hirayama, H., Takai, K., Inagaki, F., Nealson, K. H. & Horikoshi, K.(2005).Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer. Int J Syst Evol Microbiol 55, 467–472.[CrossRef] [Google Scholar]
  11. Huber, H. & Prangishvili, D.(2006).Sulfolobales. In The Prokaryotes. A Handbook on the Biology of Bacteria, 3rd edn, vol. 3, pp. 23–51. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  12. Huber, G. & Stetter, K. O.(1991).Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14, 372–378.[CrossRef] [Google Scholar]
  13. Huber, R., Wilharm, T., Huber, D., Trincone, A., Burggraf, S., König, H., Rachel, R., Rockinger, I., Fricke, H. & Stetter, K. O.(1992).Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15, 340–351.[CrossRef] [Google Scholar]
  14. Huber, R., Eder, W., Heldwein, S., Wanner, G., Huber, H., Rachel, R. & Stetter, K. O.(1998).Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64, 3576–3583. [Google Scholar]
  15. Hutchinson, M., Johnstone, K. I. & White, D.(1965). The taxonomy of certain thiobacilli. J Gen Microbiol 41, 357–366.[CrossRef] [Google Scholar]
  16. Hutchinson, M., Johnstone, K. I. & White, D.(1969). Taxonomy of the genus Thiobacillus: the outcome of numerical taxonomy applied to the group as a whole. J Gen Microbiol 57, 397–410.[CrossRef] [Google Scholar]
  17. Inaga, S., Katsumoto, T., Tanaka, K., Kameie, T., Nakane, H. & Naguro, T.(2007). Platinum blue as an alternative to uranyl acetate for staining in transmission electron microscopy. Arch Histol Cytol 70, 43–49.[CrossRef] [Google Scholar]
  18. Ito, T., Sugita, K. & Okabe, S.(2004). Isolation, characterization, and in situ detection of a novel chemolithoautotrophic sulfur-oxidizing bacterium in wastewater biofilms growing under microaerophilic conditions. Appl Environ Microbiol 70, 3122–3129.[CrossRef] [Google Scholar]
  19. Ito, T., Sugita, K., Yumoto, I., Nodasaka, Y. & Okabe, S.(2005).Thiovirga sulfuroxydans gen. nov., sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium isolated from a microaerobic waste-water biofilm. Int J Syst Evol Microbiol 55, 1059–1064.[CrossRef] [Google Scholar]
  20. Kamagata, Y. & Mikami, E.(1991). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef] [Google Scholar]
  21. Kelly, D. P. & Wood, A. P.(2000). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50, 511–516.[CrossRef] [Google Scholar]
  22. Kelly, D. P. & Wood, A. P.(2005). Family III. Halothiobacillaceae fam. nov. Kelly and Wood 2003. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 58–59. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  23. Kelly, D. P., Stackebrandt, E., Burghardt, J. & Wood, A. P.(1998). Confirmation that Thiobacillus halophilus and Thiobacillus hydrothermalis are distinct species within the gamma-subclass of the Proteobacteria. Arch Microbiol 170, 138–140.[CrossRef] [Google Scholar]
  24. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  25. La Rivière, J. W. M. & Schmidt, K.(2006). Morphologically conspicuous sulfur-oxidizing eubacteria. In The Prokaryotes, vol. 7, pp. 941–954. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  26. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  27. Macalady, J. L., Lyon, E. H., Koffman, B., Albertson, L. K., Meyer, K., Galdenzi, S. & Mariani, S.(2006). Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72, 5596–5609.[CrossRef] [Google Scholar]
  28. McDonald, I. R., Kelly, D. P., Murrell, J. C. & Wood, A. P.(1997). Taxonomic relationships of Thiobacillus halophilus, Thiobacillus aquesulis, and other species of Thiobacillus, as determined using 16S rRNA sequencing. Arch Microbiol 166, 394–398.[CrossRef] [Google Scholar]
  29. Mori, K., Kim, H., Kakegawa, T. & Hanada, S.(2003). A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7, 283–290.[CrossRef] [Google Scholar]
  30. Nakagawa, Y. & Yamasato, K.(1993). Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139, 1155–1161.[CrossRef] [Google Scholar]
  31. Nakagawa, S., Nakamura, S., Inagaki, F., Takai, K., Shirai, N. & Sako, Y.(2004).Hydrogenivirga caldilitoris gen. nov., sp. nov., a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. Int J Syst Evol Microbiol 54, 2079–2084.[CrossRef] [Google Scholar]
  32. NBRC(2005).NBRC Catalogue of Biological Resources: Microorganisms, Genomic DNA Clones, and cDNAs, 1st edn. Chiba, Japan: National Institute of Technology and Evaluation (NITE).
  33. Reysenbach, A. L., Wickham, G. S. & Pace, N. R.(1994). Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60, 2113–2119. [Google Scholar]
  34. Robertson, L. & Kuenen, J.(2006). The genus Thiobacillus. In The Prokaryotes, 3rd edn, vol. 5, pp. 812–827. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  35. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  36. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  37. Schulz, H. N., Brinkhoff, T., Ferdelman, T. G., Mariné, M. H., Teske, A. & Jørgensen, B. B.(1999). Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495.[CrossRef] [Google Scholar]
  38. Segerer, A., Neuner, A., Kristjansson, J. K. & Stetter, K. O.(1986).Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36, 559–564.[CrossRef] [Google Scholar]
  39. Segerer, A. H., Trincone, A., Gahrtz, M. & Stetter, K. O.(1991).Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int J Syst Bacteriol 41, 495–501.[CrossRef] [Google Scholar]
  40. Sievert, S. M., Heidorn, T. & Kuever, J.(2000).Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. Int J Syst Evol Microbiol 50, 1229–1237.[CrossRef] [Google Scholar]
  41. Skirnisdottir, S., Hreggvidsson, G. O., Hjörleifsdottir, S., Marteinsson, V. T., Petursdottir, S. K., Holst, O. & Kristjansson, J. K.(2000). Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66, 2835–2841.[CrossRef] [Google Scholar]
  42. Smith, A. L. & Kelly, D. P.(1979). Competition in the chemostat between an obligately and a facultatively chemolithotrophic Thiobacillus. J Gen Microbiol 115, 377–384.[CrossRef] [Google Scholar]
  43. Sorokin, D. Yu., Banciu, H., Robertson, L. A. & Kuenen, J. G.(2006). Haloalkaliphilic sulfur-oxidizing bacteria. In The Prokaryotes, 3rd edn, vol. 2, pp. 969–984. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  44. Stahl, D. A. & Amann, R.(1991). Development and application of nucleic acid probes in bacterial systematics. In Nucleic Acid Techniques in Bacterial Systematics, pp. 205–248. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  45. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K. H. & Horikoshi, K.(2003a). Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218, 167–174. [Google Scholar]
  46. Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K.(2003b).Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53, 823–827.[CrossRef] [Google Scholar]
  47. Takai, K., Hirayama, H., Nakagawa, T., Suzuki, Y., Nealson, K. H. & Horikoshi, K.(2004).Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, Western Pacific. Int J Syst Evol Microbiol 54, 2325–2333.[CrossRef] [Google Scholar]
  48. Takai, K., Miyazaki, M., Nunoura, T., Hirayama, H., Oida, H., Furushima, Y., Yamamoto, H. & Horikoshi, K.(2006).Sulfurivirga caldicuralii gen. nov., sp. nov., a novel microaerobic, thermophilic, thiosulfate-oxidizing chemolithoautotroph, isolated from a shallow marine hydrothermal system occurring in a coral reef, Japan. Int J Syst Evol Microbiol 56, 1921–1929.[CrossRef] [Google Scholar]
  49. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  50. Visser, J. M., Stefess, G. C., Robertson, L. A. & Kuenen, J. G.(1997).Thiobacillus sp. W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for aerobic treatment of sulfidic wastes. Antonie Van Leeuwenhoek 72, 127–134.[CrossRef] [Google Scholar]
  51. Wood, A. P. & Kelly, D. P.(1985). Physiological characteristics of a new thermophilic obligately chemolithotrophic Thiobacillus species, Thiobacillus tepidarius. Int J Syst Bacteriol 35, 434–437.[CrossRef] [Google Scholar]
  52. Wood, A. P. & Kelly, D. P.(1988). Isolation and characterisation of Thiobacillus aquaesulis sp. nov., a novel facultatively autotrophic moderate thermophile. Arch Microbiol 149, 339–343.[CrossRef] [Google Scholar]
  53. Wood, A. P. & Kelly, D. P.(1991). Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulfur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156, 277–280.[CrossRef] [Google Scholar]
  54. Yamamoto, H., Hiraishi, A., Kato, K., Chiura, H. X., Maki, Y. & Shimizu, A.(1998). Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64, 1680–1687. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error