1887

Abstract

Five Gram-negative, rod-shaped, moderately halophilic and denitrifying strains, designated XK1, XK2, XK3, XK4 and XK5, were isolated from a saline and alkaline soil in Korla, north-western China. These isolates could grow anaerobically using either nitrate or nitrite as terminal electron acceptors and produced gas from nitrate vigorously. A comparison and phylogenetic analysis of 16S rRNA gene sequences placed these isolates in the genus within the family . The isolates shared the highest 16S rRNA gene sequence similarities with Al12(95.6 %), YKJ-16 (95.5 %) and SL014B-85 (95.2 %) (values determined by 3.1; direct comparison results with GenBank were even lower, not ≥94 %). Sequence similarities with other recognized species were below 95.0 %, far below the 97.0 % threshold generally accepted for the delineation of separate species. BOX-PCR fingerprinting and DNA–DNA hybridization showed high similarities among the five strains which indicated they were members of the same species. The major fatty acids were C 8, C and C 7. The DNA G+C content was 65.3 mol%. All the results of the phenotypic and genetic analyses supported the hypothesis that the five new strains represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is XK1 (=CGMCC 1.6981=DSM 19633).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65711-0
2008-11-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/11/2582.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65711-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002; ). Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52, 241–249.
    [Google Scholar]
  2. Arahal, D. R., Vreeland, R. H., Litchfield, C. D., Mormile, M. R., Tindall, B. J., Oren, A., Bejar, V., Quesada, E. & Ventosa, A. ( 2007; ). Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57, 2436–2446.[CrossRef]
    [Google Scholar]
  3. Arias, S., Del Moral, A., Ferrer, M. R., Tallon, R., Quesada, E. & Bejar, V. ( 2003; ). Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7, 319–326.[CrossRef]
    [Google Scholar]
  4. Ben Ali Gam, Z., Abdelkafi, S., Casalot, L., Tholozan, J. L., Oueslati, R. & Labat, M. ( 2007; ). Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57, 2307–2313.[CrossRef]
    [Google Scholar]
  5. Calvo, C., Martínez-Checa, F., Mota, A., Bejar, V. & Quesada, E. ( 1998; ). Effect of cations, pH, and sulfate content on the viscosity and emulsifying activity of the Halomonas eurihalina exopolysaccharide. J Ind Microbiol Biotechnol 20, 205–209.[CrossRef]
    [Google Scholar]
  6. Cema, G., Wiszniowski, J., Zabczyński, S., Zablocka-Godlewska, E., Raszka, A. & Surmacz-Górska, J. ( 2007; ). Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in a rotating biological contactor (RBC). Water Sci Technol 55, 35–42.
    [Google Scholar]
  7. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  8. Dobson, S. J. & Franzmann, P. D. ( 1996; ). Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46, 550–558.[CrossRef]
    [Google Scholar]
  9. Escara, J. F. & Hutton, J. R. ( 1980; ). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19, 1315–1327.[CrossRef]
    [Google Scholar]
  10. Franzmann, P. D. & Tindall, B. J. ( 1990; ). A chemotaxonomic study of members of the family Halomonadaceae. Syst Appl Microbiol 13, 142–147.[CrossRef]
    [Google Scholar]
  11. Franzmann, P. D., Wehmeyer, U. & Stackebrandt, E. ( 1988; ). Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11, 16–19.[CrossRef]
    [Google Scholar]
  12. García, M. T., Mellado, E., Ostos, J. C. & Ventosa, A. ( 2004; ). Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54, 1723–1728.[CrossRef]
    [Google Scholar]
  13. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  14. Ju, L. K., Huang, L. & Trivedi, H. ( 2007; ). Simultaneous nitrification, denitrification, and phosphorus removal in single-tank low-dissolved-oxygen systems under cyclic aeration. Water Environ Res 79, 912–920.[CrossRef]
    [Google Scholar]
  15. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  16. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  17. Margesin, R. & Schinner, F. ( 2001; ). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73–83.[CrossRef]
    [Google Scholar]
  18. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  19. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  20. Martínez-Cánovas, M. J., Quesada, E., Llamas, I. & Béjar, V. ( 2004; ). Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54, 733–737.[CrossRef]
    [Google Scholar]
  21. Martínez-Checa, F., Toledo, F. L., Vílchez, R., Quesada, E. & Calvo, C. ( 2002; ). Yield production, chemical composition and functional properties of emulsifier H28 synthesized by Halomonas eurihalina strain H-28 in media containing various hydrocarbons. Appl Microbiol Biotechnol 58, 358–363.[CrossRef]
    [Google Scholar]
  22. Mata, J. A., Martinez-Cánovas, J., Quesada, E. & Béjar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  23. Nick, G., Jussila, M., Hoste, B., Niemi, R. M., Kaijalainen, S., de Lajudie, P., Gillis, M., de Bruijn, F. J. & Lindström, K. ( 1999; ). Rhizobia isolated from root nodules of tropical leguminous trees characterized using DNA-DNA dot-blot hybridisation and rep-PCR genomic fingerprinting. Syst Appl Microbiol 22, 287–299.[CrossRef]
    [Google Scholar]
  24. Ntougias, S., Zervakis, G. I. & Fasseas, C. ( 2007; ). Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996 . Int J Syst Evol Microbiol 57, 1975–1983.[CrossRef]
    [Google Scholar]
  25. Prado, B. A., Del Moral, A., Quesada, E., Ríos, R., Monteoliva-Sanchez, M., Campos, V. & Ramos-Cormenzana, A. ( 1991; ). Numerical taxonomy of moderately halophilic Gram negative rods isolated from the Salar of Atacama, Chile. Syst Appl Microbiol 14, 275–281.[CrossRef]
    [Google Scholar]
  26. Quesada, E., Ventosa, A., Rodríguez-Valera, F., Megías, L. & Ramos-Cormenzana, A. ( 1983; ). Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129, 2649–2657.
    [Google Scholar]
  27. Rademaker, J. L. W. & de Bruijn, F. J. ( 1997; ). Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In DNA Markers: Protocols, Applications and Overviews, pp. 151–171. Edited by G. Gaetano-Anolles & P. M. Gresshoff. New York: Wiley.
  28. Rademaker, J. L. W., Hoste, B., Louws, F. J., Kersters, K., Swings, J., Vauterin, L., Vauterin, P. & de Bruijn, F. J. ( 2000; ). Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50, 665–677.[CrossRef]
    [Google Scholar]
  29. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  30. Subov, N. N. ( 1931; ). Oceanographical Tables. Moscow: USSR Oceanographic Institute Hydrometeorological Commission.
  31. Sundberg, C., Tonderski, K. & Lindgren, P. E. ( 2007; ). Potential nitrification and denitrification and the corresponding composition of the bacterial communities in a compact constructed wetland treating landfill leachates. Water Sci Technol 56, 159–166.
    [Google Scholar]
  32. Ventosa, A. & Nieto, J. J. ( 1995; ). Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11, 85–94.[CrossRef]
    [Google Scholar]
  33. Ventosa, A., Quesada, E., Rodriguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968.
    [Google Scholar]
  34. Versalovic, J. M., Schneider, M., de Brujin, F. J. & Lupski, J. R. ( 1994; ). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5, 25–40.
    [Google Scholar]
  35. Vreeland, R. H., Litchfield, C. D., Martin, E. L. & Elliot, E. ( 1980; ). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 485–495.[CrossRef]
    [Google Scholar]
  36. Wang, Y. N., Cai, H., Chi, C. Q., Lu, A. H., Lin, X. G., Jiang, Z. F. & Wu, X. L. ( 2007; ). Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57, 1222–1226.[CrossRef]
    [Google Scholar]
  37. Yoon, J. H., Lee, K. C., Kho, Y. H., Kang, K. H., Kim, C. J. & Park, Y. H. ( 2002; ). Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52, 123
    [Google Scholar]
  38. Zumft, W. G. ( 1992; ). The denitrifying bacteria. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, pp. 554–582. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65711-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65711-0
Loading

Data & Media loading...

Supplements

Transmission electron micrograph of cells of strain XK1 . [ PDF] 70 KB

PDF

Neighbour-joining phylogenetic relationships between the five strains of sp. nov. and other species of the family . [ PDF] 40 KB

PDF

BOX-PCR fingerprint patterns of the five novel isolates. [ PDF] 67 KB

PDF

Differential phenotypic characteristics among strains XK1 , XK2, XK3, XK4 and XK5. [ PDF] 39 KB

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error