A rod-shaped, Gram-negative, chemo-organotrophic, heterotrophic, strictly aerobic, gliding bacterial strain, SW5, capable of degrading sulphated fucans from brown algae was isolated from a water-treatment facility that recycles the effluent of an alginate-extraction plant in Landerneau (Brittany, France). Its taxonomic position was investigated by a polyphasic approach. Strain SW5 formed dark-yellow colonies, was oxidase-negative and catalase-positive and grew optimally at 25 °C and pH 7.5 and in the presence of 2.5 % (w/v) NaCl. The DNA G+C content was 34.5 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene allocated strain SW5 to the genus in the family , with a similarity of 98.4 % to the type strain of , the only recognized species. Its low level of DNA–DNA relatedness (<25 %) with the type strain of this species and differentiating phenotypic characteristics demonstrated that strain SW5 constitutes a novel species, for which the name sp. nov. is proposed. Strain SW5 (=CIP 109502 =DSM 18792) is the type strain.


Article metrics loading...

Loading full text...

Full text loading...



  1. Barbeyron, T., Kean, C. & Forterre, P.(1984). DNA adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage. J Bacteriol 160, 586–590. [Google Scholar]
  2. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F., Rapp, B. A. & Wheeler, D. L.(1999). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef] [Google Scholar]
  3. Bernardet, J.-F. & Nakagawa, Y.(2006). An introduction to the family Flavobacteriaceae. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 7, pp. 455–480. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  4. Bernardet, J.-F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K. & Vandamme, P.(1996). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46, 128–148.[CrossRef] [Google Scholar]
  5. Bernardet, J. F., Nakagawa, Y. & Holmes, B.(2002). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef] [Google Scholar]
  6. Colin, S., Deniaud, E., Jam, M., Descamps, V., Chevolot, Y., Kervarec, N., Yvin, J.-C., Barbeyron, T., Michel, G. & Kloareg, B.(2006). Cloning and biochemical characterization of the fucanase FcnA: definition of a novel glycoside hydrolase family specific for sulfated fucans. Glycobiology 16, 1021–1032.[CrossRef] [Google Scholar]
  7. Descamps, V., Colin, S., Lahaye, M., Jam, M., Richard, C., Potin, P., Barbeyron, T., Yvin, J.-C. & Kloareg, B.(2006). Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar Biotechnol 8, 27–39.[CrossRef] [Google Scholar]
  8. Doetsch, R. N.(1981). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  9. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  10. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  11. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  12. Galtier, N., Gouy, M. & Gautier, C.(1996).seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548. [Google Scholar]
  13. Hicks, R. E., Amann, R. I. & Stahl, D. A.(1992). Dual staining of natural bacterioplankton with 4′,6-diamino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol 58, 2158–2163. [Google Scholar]
  14. Hugh, R. & Leifson, E.(1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various negative bacteria. J Bacteriol 66, 24–26. [Google Scholar]
  15. Ivanova, T. L., Turova, T. P. & Antonov, A. S.(1988). DNA-DNA hybridization studies on some purple non-sulfur bacteria. Syst Appl Microbiol 10, 259–263.[CrossRef] [Google Scholar]
  16. Johnson, J. L.(1984). DNA reassociation and RNA hybridization of bacterial nucleic acids. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 8–11. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  17. Jung, S.-Y., Kang, S.-J., Lee, M.-H., Lee, S.-Y., Oh, T.-K. & Yoon, J.-H.(2005).Gaetbulibacter saemankumensis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 55, 1845–1849.[CrossRef] [Google Scholar]
  18. Kane, M. D., Poulsen, L. K. & Stahl, D. A.(1993). Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59, 682–686. [Google Scholar]
  19. Katoh, K., Misawa, K., Kuma, K. & Miyata, T.(2002).mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30, 3059–3066.[CrossRef] [Google Scholar]
  20. Katoh, K., Kuma, K., Toh, H. & Miyata, T.(2005).mafft version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33, 511–518.[CrossRef] [Google Scholar]
  21. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  22. Kloareg, B. & Quatrano, R. S.(1988). Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Ann Rev 26, 259–315. [Google Scholar]
  23. Kristjánsson, J. K., Hjörleifsdóttir, S., Marteinsson, V. T. & Alfredsson, G. A.(1994).Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1. Syst Appl Microbiol 17, 44–50.[CrossRef] [Google Scholar]
  24. Kwon, K. K., Lee, H.-S., Jung, H.-B., Kang, J.-H. & Kim, S.-J.(2006).Yeosuana aromativorans gen. nov., sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae, isolated from estuarine sediment of the South Sea, Korea. Int J Syst Evol Microbiol 56, 727–732.[CrossRef] [Google Scholar]
  25. Lee, S. D.(2007).Tamlana crocina gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae, isolated from beach sediment in Korea. Int J Syst Evol Microbiol 57, 764–769.[CrossRef] [Google Scholar]
  26. Mabeau, S. & Kloareg, B.(1987). Isolation and analysis of the cell walls of brown algae: Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata and Laminaria digitata. J Exp Bot 38, 1573–1580.[CrossRef] [Google Scholar]
  27. Mabeau, S., Kloareg, B. & Joseleau, J.-P.(1990). Fractionation and analysis of fucans from brown algae. Phytochemistry 29, 2441–2445.[CrossRef] [Google Scholar]
  28. Nedashkovskaya, O. I., Kim, S. B., Han, S. K., Rhee, M.-S., Lysenko, A. M., Rohde, M., Zhukova, N. V., Frolova, G. M., Mikhailov, V. V. & Bae, K. S.(2004).Algibacter lectus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int J Syst Evol Microbiol 54, 1257–1261.[CrossRef] [Google Scholar]
  29. Nedashkovskaya, O. I., Kim, S. B., Han, S. K., Snauwaert, C., Vancanneyt, M., Swings, J., Kim, K.-O., Lysenko, A. M., Rohde, M. & other authors(2005).Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae. Int J Syst Evol Microbiol 55, 49–55.[CrossRef] [Google Scholar]
  30. Nedashkovskaya, O. I., Kim, S. B., Kwak, J., Mikhailov, V. V. & Bae, K. S.(2006).Mariniflexile gromovii gen. nov., sp. nov., a gliding bacterium isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 56, 1635–1638.[CrossRef] [Google Scholar]
  31. Nichols, C. M., Bowman, J. P. & Guezennec, J.(2005).Olleya marilimosa gen. nov., sp. nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean. Int J Syst Evol Microbiol 55, 1557–1561.[CrossRef] [Google Scholar]
  32. Pearson, W. R. & Lipman, D. J.(1988). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef] [Google Scholar]
  33. Reichenbach, H., Kleinig, H. & Achenbach, H.(1974). The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch Microbiol 101, 131–144.[CrossRef] [Google Scholar]
  34. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  35. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  36. Smibert, R. M. & Krieg, N. R.(1981). General characterization. In Manual of Methods for General Bacteriology, pp. 409–443. Edited by P. Gerhardt, R. G. E. Murray; R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  37. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  38. Zablackis, E. & Perez, J.(1990). A partially pyruvated carrageenan from Hawaiian Grateloupia filicina (Cryptonemiales, Rhodophyta). Bot Mar 33, 273–276. [Google Scholar]
  39. ZoBell, C. E.(1941). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4, 41–75. [Google Scholar]

Data & Media loading...


Colonies of SW5 on ZoBell agar after 5 days of incubation at 20°C. Bar, 1 cm.


Phase-contrast micrograph of cells of strain SW5 grown in ZoBell broth at 20°C for 2 days. Bar, 6 µm.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error