1887

Abstract

Two Gram-negative, rod-shaped, gliding and pink-pigmented bacterial strains, X14-1 and X19-1, were isolated from a mixture of sand samples collected from the desert of Xinjiang, China, and characterized by using a polyphasic taxonomic approach. Strains X14-1 and X19-1 contained MK-7 as the predominant menaquinone. The major cellular fatty acids included iso-C, iso-C 3-OH, summed feature 3 and summed feature 4. The DNA GC contents of strains X14-1 and X19-1 were 48.2 and 48.9 mol%, respectively. 16S rRNA gene sequence analysis showed that the isolates were highly related to each other (99.2 %) and confirmed their placement in the genus . Strains X14-1 and X19-1 exhibited 16S rRNA gene similarity levels of 95.0–97.2 % to the type strains of the two species with validly published names. DNA–DNA hybridization experiments revealed a high level of relatedness between the two new isolates (82 %), but low levels of relatedness between strain X14-1 and the phylogenetically most closely related species KMM 6156 (51 %). On the basis of genotypic and phenotypic evidence, strains X14-1 and X19-1 are considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is X14-1 (=CCTCC AB 206081=NRRL B-51097).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65667-0
2008-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/5/1210.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65667-0&mimeType=html&fmt=ahah

References

  1. Bowman, J. P. ( 2000; ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50, 1861–1868.
    [Google Scholar]
  2. Buczolits, S., Denner, E. B. M., Vybiral, D., Wieser, M., Kämpfer, P. & Busse, H.-J. ( 2002; ). Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 52, 445–456.
    [Google Scholar]
  3. Doetsch, R. N. ( 1981; ). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerdhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  4. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  6. Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondrat'eva, T. F., Moore, E. R. B., Abraham, W.-R., Lünsdorf, H., Timmis, K. N., Yakimov, M. M. & Golyshin, P. N. ( 2000; ). Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50, 997–1006.[CrossRef]
    [Google Scholar]
  7. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  8. Kovács, N. ( 1956; ). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178, 703–704.
    [Google Scholar]
  9. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  10. Lin, Y.-C., Uemori, K., de Briel, D. A., Arunpairojana, V. & Yokota, A. ( 2004; ). Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 54, 1669–1676.[CrossRef]
    [Google Scholar]
  11. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  12. Nedashkovskaya, O. I., Kim, S. B., Suzuki, M., Shevchenko, L. S., Lee, M. S., Lee, K. H., Park, M. S., Frolova, G. M., Oh, H. W. & other authors ( 2005; ). Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 55, 2583–2588.[CrossRef]
    [Google Scholar]
  13. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  14. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Woods & N. R. Krieg. Washington, DC: American Society for Microbiology.
  15. Suresh, K., Mayilraj, S. & Chakrabarti, T. ( 2006; ). Effluviibacter roseus gen. nov., sp. nov., isolated from muddy water, belonging to the family “Flexibacteraceae”. Int J Syst Evol Microbiol 56, 1703–1707.[CrossRef]
    [Google Scholar]
  16. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  17. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  18. Willems, A., Doignon-Bourcier, F., Goris, J., Coopman, R., de Lajudie, P., De Vos, P. & Gillis, M. ( 2001; ). DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51, 1315–1322.
    [Google Scholar]
  19. Wilson, K. ( 1987; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Greene Publishing and Wiley-Interscience.
  20. Xie, C. H. & Yokota, A. ( 2003; ). Phylogenetic analysis of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49, 345–349.[CrossRef]
    [Google Scholar]
  21. Zhou, Y., Wang, X., Liu, H., Zhang, K. Y., Zhang, Y. Q., Lai, R. & Li, W. J. ( 2007; ). Pontibacter akesuensis sp. nov., isolated from a desert soil in China. Int J Syst Evol Microbiol 57, 321–325.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65667-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65667-0
Loading

Data & Media loading...

vol. , part 5, pp. 1210 - 1214

Transmission electron micrograph of cells of strain X14-1 . [PDF](143 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error