1887

Abstract

A Gram-negative, motile, rod-shaped, extremely halophilic archaeon, designated strain HPC1-2, was isolated from , a salt-fermented fish product of Thailand. Strain HPC1-2 was able to grow at 20–60 °C (optimum at 37–40 °C), at 2.6–5.1 M NaCl (optimum at 3.4–4.3 M NaCl) and at pH 5.0–8.0 (optimum at pH 7.0–7.5). Hypotonic treatment with less than 1.7 M NaCl caused cell lysis. The major polar lipids of the isolate were CC derivatives of phosphatidylglycerol, methylated phosphatidylglycerol phosphate, phosphatidylglycerol sulfate, triglycosyl diether, sulfated triglycosyl diether and sulfated tetraglycosyl diether. The G+C content of the DNA was 65.5 mol%. 16S rRNA gene sequence analysis indicated that the isolate represented a member of the genus in the family . Based on 16S rRNA gene sequence similarity, strain HPC1-2 was related most closely to DSM 3754 (99.2 %) and JCM 13558 (97.8 %). However, low levels of DNA–DNA relatedness suggested that strain HPC1-2 was genotypically different from these closely related type strains. Strain HPC1-2 could also be differentiated based on physiological and biochemical characteristics. Therefore, strain HPC1-2 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HPC1-2 (=BCC 24372=JCM 14661=PCU 302).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65592-0
2008-09-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/9/2136.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65592-0&mimeType=html&fmt=ahah

References

  1. Barrow, G. I. & Feltham, R. K. A.(1993).Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  2. Chamroensaksri, N., Akaracharanya, A., Visessanguan, W. & Tanasupawat, S.(2008). Characterization of halophilic bacterium NB2-1 from Pla-ra and its protease production. J Food Biochem 32, 536–555.[CrossRef] [Google Scholar]
  3. Dussault, H. P.(1955). An improved technique for staining red halophilic bacteria. J Bacteriol 70, 484–485. [Google Scholar]
  4. Elazari-Volcani, B.(1957). Genus XII. Halobacterium Elazari-Volcani. In Bergey's Manual of Determinative Bacteriology, 7th edn, pp. 207–212. Edited by R. S. Breed, R. G. D. Murray & N. R. Smith. Baltimore: Williams & Wilkins.
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  6. Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. & Phillips, G. B. (editors)(1981).Manual of Methods for General Bacteriology. Washington, DC: American Society for Microbiology.
  7. Grant, W. D.(2001). Genus I. Halobacterium Elazari-Volcani 1957, 207AL emend. Larsen and Grant 1989, 2222. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 301–305. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  8. Gruber, C., Legat, A., Pfaffenhuemer, M., Radax, C., Weidler, G. W., Busse, H.-J. & Stan-Lotter, H.(2004).Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of Hbt. salinarum and emended description of Hbt. salinarum. Extremophiles 8, 431–439.[CrossRef] [Google Scholar]
  9. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  10. Leifson, E.(1963). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184. [Google Scholar]
  11. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H.(1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef] [Google Scholar]
  12. Oren, A., Ventosa, A. & Grant, W. D.(1997). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef] [Google Scholar]
  13. Phithakpol, B., Varanyanond, W., Reungmaneepaitoon, S. & Wood, H.(1995).The Traditional Fermented Foods of Thailand. Kuala Lumpur: ASEAN Food Handling Bureau Level 3.
  14. Saisithi, P., Kasemsarn, B., Liston, J. J. & Dollar, A. M.(1966). Microbiology and chemistry of fermented fish. J Food Sci 31, 105–110.[CrossRef] [Google Scholar]
  15. Saito, H. & Miura, K. I.(1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef] [Google Scholar]
  16. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  17. Stan-Lotter, H., Pfaffenhuemer, M., Legat, A., Busse, H.-J., Radax, C. & Gruber, C.(2002).Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52, 1807–1814.[CrossRef] [Google Scholar]
  18. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  19. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  20. Tanasupawat, S. & Komagata, K.(2001). Lactic acid bacteria in fermented foods in Southeast Asia. In Microbial Diversity in Asia Technology and Prospects, pp. 43–59. Edited by B. H. Nga, H. M. Tan & K.-I. Suzuki. Singapore: World Scientific Publishing Co. Pte. Ltd.
  21. Tanasupawat, S., Shida, O., Okada, S. & Komagata, K.(2000).Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int J Syst Evol Microbiol 50, 1479–1485.[CrossRef] [Google Scholar]
  22. Tanasupawat, S., Namwong, S., Kudo, T. & Itoh, T.(2007).Piscibacillus salipiscarius gen. nov., sp. nov., a moderately halophilic bacterium from fermented fish (pla-ra) in Thailand. Int J Syst Evol Microbiol 57, 1413–1417.[CrossRef] [Google Scholar]
  23. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  24. Thongthai, C., McGenity, T. J., Suntinanalert, P. & Grant, W. D.(1992). Isolation and characterization of an extremely halophilic archaeobacterium from traditionally fermented Thai fish sauce (nam pla). Lett Appl Microbiol 14, 111–114.[CrossRef] [Google Scholar]
  25. Ventosa, A. & Oren, A.(1996).Halobacterium salinarum nom. corrig., a name to replace Halobacterium salinarium (Elazari-Volcani) and to include Halobacterium halobium and Halobacterium cutirubrum. Int J Syst Bacteriol 46, 347[CrossRef] [Google Scholar]
  26. Yang, Y., Cui, H. L., Zhou, P. J. & Lie, S. J.(2006).Halobacterium jilantaiense sp. nov., a halophilic archaeon isolated from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56, 2353–2355.[CrossRef] [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.65592-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65592-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2136 - 2140

Maximum-parsimony phylogenetic tree showing the relationships between strain HPC1-2 and related archaeal species based on 16S rRNA gene sequences.

Maximum-likelihood phylogenetic tree showing the relationships between strain HPC1-2 and related archaeal species based on 16S rRNA gene sequences.

Combined file [ PDF] 59 KB



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error