1887

Abstract

Three Gram-negative, rod-shaped, oxidase-positive, aerobic, non-motile bacterial strains, designated H9, H10 and H15, were isolated during a study on the diversity of culturable psychrotolerant bacteria in raw cow's milk. Comparisons of 16S rRNA gene sequences showed that the three strains were very closely related to each other (sequence similarities of 99.6–99.8 %). A polyphasic taxonomic study of the isolates resulted in their identification as members of the genus (family , phylum ). The three strains showed ≤96.9 % sequence similarity with respect to the type strains of described species, indicating that H9, H10 and H15 represent a novel species of the genus . The three strains grew at 7–37 °C (strain H10 grew at up to 41 °C), with 0–2.5 % NaCl and at pH 5.0–9.8. The dominant cellular fatty acids of strain H9 were 15 : 0 iso (38.9 %), 15 : 0 anteiso (15.6 %) and 17 : 0 iso 3-OH (12.7 %). Strain H10 also possessed 17 : 1 iso 9 (14.8 %) as a major fatty acid. On the basis of phenotypic properties and phylogenetic distinctiveness, the three milk isolates represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is H9 (=LMG 24227 =DSM 19482).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65500-0
2008-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/4/1024.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65500-0&mimeType=html&fmt=ahah

References

  1. Ben-Ze'ev, I. S., Levy, E., Eilam, T. & Anikster, Y. ( 2005; ). Whole-cell fatty acid profiles – a tool for species and subspecies classification in the Puccinia recondita complex. J Plant Pathol 87, 187–197.
    [Google Scholar]
  2. Bernardet, J.-F., Nakagawa, Y. & Holmes, B. ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  3. Bernardet, J. F., Vancanneyt, M., Matte-Tailliez, O., Grisez, L., Tailliez, P., Bizet, C., Nowakowski, M., Kerouault, B. & Swings, J. ( 2005; ). Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst Appl Microbiol 28, 640–660.[CrossRef]
    [Google Scholar]
  4. Bernardet, J.-F., Hugo, C. & Bruun, B. ( 2006; ). The genera Chryseobacterium and Elizabethkingia. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 7, pp. 638–676. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  5. de Beer, H., Hugo, C. J., Jooste, P. J., Willems, A., Vancanneyt, M., Coenye, T. & Vandamme, P. A. R. ( 2005; ). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken processing plant. Int J Syst Evol Microbiol 55, 2149–2153.[CrossRef]
    [Google Scholar]
  6. de Beer, H., Hugo, C. J., Jooste, P. J., Vancanneyt, M., Coenye, T. & Vandamme, P. ( 2006; ). Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. Int J Syst Evol Microbiol 56, 1317–1322.[CrossRef]
    [Google Scholar]
  7. Fautz, E. & Reichenbach, H. ( 1980; ). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8, 87–91.[CrossRef]
    [Google Scholar]
  8. Felske, A., Rheims, H., Wolterink, A., Stackebrandt, E. & Akkermans, A. D. ( 1997; ). Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143, 2983–2989.[CrossRef]
    [Google Scholar]
  9. Gallego, V., Garcia, M. T. & Ventosa, A. ( 2006; ). Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int J Syst Evol Microbiol 56, 1589–1592.[CrossRef]
    [Google Scholar]
  10. González, C. J., Santos, J. A., Garcia-Lopez, M. L. & Otero, A. ( 2000; ). Psychrobacters and related bacteria in freshwater fish. J Food Prot 63, 315–321.
    [Google Scholar]
  11. Hantsis-Zacharov, E. & Halpern, M. ( 2007a; ). Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 57, 2344–2348.[CrossRef]
    [Google Scholar]
  12. Hantsis-Zacharov, E. & Halpern, M. ( 2007b; ). Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol 73, 7162–7168.[CrossRef]
    [Google Scholar]
  13. Holmes, B., Owen, R. J., Steigerwalt, A. G. & Brenner, D. J. ( 1984; ). Flavobacterium gleum, a new species found in human clinical specimens. Int J Syst Bacteriol 34, 21–25.[CrossRef]
    [Google Scholar]
  14. Hugo, C. J., Jooste, P. J., Segers, P., Vancanneyt, M. & Kersters, K. ( 1999; ). A polyphasic taxonomic study of Chryseobacterium strains isolated from dairy sources. Syst Appl Microbiol 22, 586–595.[CrossRef]
    [Google Scholar]
  15. Hugo, C. J., Segers, P., Hoste, B., Vancanneyt, M. & Kersters, K. ( 2003; ). Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53, 771–777.[CrossRef]
    [Google Scholar]
  16. Kämpfer, P., Dreyer, U., Neef, A., Dott, W. & Busse, H.-J. ( 2003; ). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53, 93–97.[CrossRef]
    [Google Scholar]
  17. Kim, K. K., Bae, H.-S., Schumann, P. & Lee, S.-T. ( 2005a; ). Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55, 133–138.[CrossRef]
    [Google Scholar]
  18. Kim, K. K., Kim, M. K., Lim, J. H., Park, H. Y. & Lee, S. T. ( 2005b; ). Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55, 1287–1293.[CrossRef]
    [Google Scholar]
  19. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  20. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  21. Park, M. S., Jung, S. R., Lee, K. H., Lee, M. S., Do, J. O., Kim, S. B. & Bae, K. S. ( 2006; ). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56, 433–438.[CrossRef]
    [Google Scholar]
  22. Peterson, W. J., Bell, T. A., Etchells, J. L. & Smart, W. W. G., Jr ( 1954; ). A procedure for demonstrating the presence of carotenoid pigments in yeasts. J Bacteriol 67, 708–713.
    [Google Scholar]
  23. Quan, Z. X., Kim, K. K., Kim, M. K., Jin, L. & Lee, S. T. ( 2007; ). Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int J Syst Evol Microbiol 57, 141–145.[CrossRef]
    [Google Scholar]
  24. Shen, F.-T., Kämpfer, P., Young, C.-C., Lai, W.-A. & Arun, A. B. ( 2005; ). Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55, 1301–1304.[CrossRef]
    [Google Scholar]
  25. Shimomura, K., Kaji, S. & Hiraishi, A. ( 2005; ). Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55, 1903–1906.[CrossRef]
    [Google Scholar]
  26. Tai, C. J., Kuo, H. P., Lee, F. L., Chen, H. K., Yokota, A. & Lo, C. C. ( 2006; ). Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56, 1771–1776.[CrossRef]
    [Google Scholar]
  27. Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K. & Holmes, B. ( 1994; ). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44, 827–831.[CrossRef]
    [Google Scholar]
  28. Weon, H. Y., Kim, B. Y., Yoo, S. H., Kwon, S. W., Cho, Y. H., Go, S. J. & Stackebrandt, E. ( 2006; ). Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56, 1501–1504.[CrossRef]
    [Google Scholar]
  29. Wilson, K. ( 1987; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Green Publishing & Wiley-Interscience.
  30. Yabuuchi, E., Kaneko, T., Yano, I., Moss, C. W. & Miyoshi, N. ( 1983; ). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 33, 580–598.[CrossRef]
    [Google Scholar]
  31. Yoon, J. H., Kang, S. J. & Oh, T. K. ( 2007; ). Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 57, 1355–1359.[CrossRef]
    [Google Scholar]
  32. Young, C. C., Kämpfer, P., Shen, F. T., Lai, W. A. & Arun, A. B. ( 2005; ). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55, 423–426.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65500-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65500-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1024 - 1028

Electron micrograph of negatively stained cells of strain H9 . Bar, 500 nm.



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error