1887

Abstract

A Gram-negative, strictly aerobic bacterium, designated strain byr23-80, was isolated from lysimeter soil by using a high-throughput cultivation technique. Cells of strain byr23-80 were found to be short rods that multiplied by binary fission and were motile by means of a single polar flagellum. Occasionally, two to three polar or lateral flagella were observed. The optimum growth temperature was 15 °C and the pH optimum was 7.0–7.5. The predominant cellular fatty acids were C 7 (54.7 %) and C (21.4 %). In addition, the diagnostic fatty acids C 3-OH and C 2-OH were detected. Q-8 was the predominant respiratory quinone. The isolate was physiologically very versatile, using a wide range of sugars, organic acids and amino acids as single carbon and energy sources for growth. The G+C content of the genomic DNA was 65.3 mol%. Phylogenetic analyses supported the assignment of strain byr23-80 to the genus within the family of the class . Within the genus, strain byr23-80 was most closely related to DSM 18055, with a 16S rRNA gene sequence similarity of 98.3 %. However, DNA–DNA hybridization revealed a pairwise similarity for the genomic DNA of only 20.1 % between strain byr23-80 and strain DSM 18055. The novel isolate could be distinguished from the existing species , , , , and by its significantly lower temperature optimum for growth and by the absence of gelatinase, -galactosidase and -galactosidase activities. On the basis of these characteristics, strain byr23-80 constitutes a novel species of the genus , for which the name sp. nov. is proposed. The type strain is byr23-80 (=DSM 18925=ATCC BAA-1465).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65473-0
2008-05-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/5/1245.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65473-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Angle, J. S., McGrath, S. P. & Chaney, R. L. ( 1991; ). New culture medium containing ionic concentrations of nutrients similar to concentrations found in the soil solution. Appl Environ Microbiol 57, 3674–3676.
    [Google Scholar]
  3. Bodour, A. A., Wang, J. M., Brusseau, M. L. & Maier, R. M. ( 2003; ). Temporal changes in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environ Microbiol 5, 888–895.[CrossRef]
    [Google Scholar]
  4. Bruns, A., Hoffelner, H. & Overmann, J. ( 2003; ). A novel approach for high throughput cultivation assays and the isolation of planktonic bacteria. FEMS Microbiol Ecol 45, 161–171.[CrossRef]
    [Google Scholar]
  5. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  6. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  7. Ederer, G. M., Chu, J. H. & Blazevic, D. J. ( 1971; ). Rapid test for urease and phenylalanine deaminase production. Appl Microbiol 21, 545
    [Google Scholar]
  8. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  9. Gallego, V., Sánchez-Porro, C., García, M. T. & Ventosa, A. ( 2006; ). Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56, 2449–2453.[CrossRef]
    [Google Scholar]
  10. Gich, F. & Overmann, J. ( 2006; ). Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. Int J Syst Evol Microbiol 56, 847–854.[CrossRef]
    [Google Scholar]
  11. Gich, F., Schubert, K., Bruns, A., Hoffelner, H. & Overmann, J. ( 2005; ). Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl Environ Microbiol 71, 5908–5919.[CrossRef]
    [Google Scholar]
  12. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  13. Khammar, N., Malhautier, L., Degrange, V., Lensi, R., Godon, J.-J. & Fanlo, J.-L. ( 2005; ). Link between spatial structure of microbial communities and degradation of a complex mixture of volatile organic compounds in peat biofilters. J Appl Microbiol 98, 476–490.[CrossRef]
    [Google Scholar]
  14. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  15. La Scola, B., Birtles, R. J., Mallet, M.-N. & Raoult, D. ( 1998; ). Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36, 2847–2852.
    [Google Scholar]
  16. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  17. Lányí, B. ( 1987; ). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67.
    [Google Scholar]
  18. Lindquist, D., Murrill, D., Burran, W. P., Winans, G., Janda, J. M. & Probert, W. ( 2003; ). Characteristics of Massilia timonae and Massilia timonae-like isolates from human patients, with an emended description of the species. J Clin Microbiol 41, 192–196.[CrossRef]
    [Google Scholar]
  19. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  20. Mandel, M., Igambi, L., Bergendahl, J., Dodson, M. L. & Scheltgen, E. ( 1970; ). Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101, 333–338.
    [Google Scholar]
  21. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  22. Miller, L. T. ( 1982; ). A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  23. Øvreas, L., Daae, F. L., Torsvik, V. & Rodríguez-Valera, F. ( 2003; ). Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46, 291–301.[CrossRef]
    [Google Scholar]
  24. Padmanabhan, P., Padmanabhan, S., DeRito, C., Gray, A., Gannon, D., Snape, J. R., Tsai, C. S., Park, W., Jeon, C. & Madsen, E. L. ( 2003; ). Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol 69, 1614–1622.[CrossRef]
    [Google Scholar]
  25. Skerman, V. B. D. ( 1967; ). A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins.
  26. Spurr, A. R. ( 1969; ). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.[CrossRef]
    [Google Scholar]
  27. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  28. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  29. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  30. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  31. Zhang, Y.-Q., Li, W.-J., Zhang, K.-Y., Tian, X.-P., Jiang, Y., Xu, L.-H., Jiang, C.-L. & Lai, R. ( 2006; ). Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 56, 459–463.[CrossRef]
    [Google Scholar]
  32. Zul, D., Denzel, S. & Overmann, J. ( 2007; ). Effects of plant biomass, plant diversity and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity. Appl Environ Microbiol 73, 6916–6929.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65473-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65473-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error