1887

Abstract

Three rod-shaped, Gram-negative, chemo-organotrophic, heterotrophic, strictly aerobic, gliding bacterial strains, KT02ds18-4, KT02ds18-5 and KT02ds18-6, were isolated from North Sea surface waters near the island of Helgoland, Germany. Their taxonomic position was investigated by a polyphasic approach. The three strains were light yellow, oxidase- and catalase-positive, and grew optimally at 25 °C, at pH 7.5, and in the presence of 2.5 % (w/v) NaCl. The Chargaff's coefficient was 34.2–34.4 mol%. The three strains shared >90 % DNA–DNA relatedness and an identical 16S rRNA gene sequence. Comparative 16S rRNA gene sequence analysis allocated the three strains to the genus in the family , with similarities of 97.0–97.4 % to five of the recognized species. Their low level of DNA–DNA relatedness (<20 %) with these species and differentiating phenotypic characteristics demonstrated that they constitute a new species for which the name sp. nov. is proposed. Strain KT02ds18-6 (=CIP 109504=DSM 18668) is the type strain. An emended description of the genus is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65469-0
2008-04-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/4/790.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65469-0&mimeType=html&fmt=ahah

References

  1. Abell, G. C. J. & Bowman, J. P. ( 2005; ). Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol 51, 265–277.[CrossRef]
    [Google Scholar]
  2. Barbeyron, T., Kean, C. & Forterre, P. ( 1984; ). DNA Adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage. J Bacteriol 160, 586–590.
    [Google Scholar]
  3. Barbeyron, T., L'Haridon, S., Corre, E., Kloareg, B. & Potin, P. ( 2001; ). Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 985–997.[CrossRef]
    [Google Scholar]
  4. Bauer, M., Kube, M., Teeling, H., Richter, M., Lombardot, T., Allers, E., Würdemann, C. A., Quast, C., Kuhl, H. & other authors ( 2006; ). Whole genome analysis of the marine BacteroidetesGramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8, 2201–2213.[CrossRef]
    [Google Scholar]
  5. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F., Rapp, B. A. & Wheeler, D. L. ( 1999; ). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef]
    [Google Scholar]
  6. Bernardet, J.-F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K. & Vandamme, P. ( 1996; ). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46, 128–148.[CrossRef]
    [Google Scholar]
  7. Bernardet, J.-F., Nakagawa, Y. & Holmes, B. ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Bacteriol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  8. DeLong, E. F., Preston, C. M., Mincer, T., Rich, V., Hallam, S. J., Frigaard, N. U., Martinez, A., Sullivan, M. B., Edwards, R. & other authors ( 2006; ). Community genomics among stratified microbial assemblages in the ocean's interior. Science 311, 496–503.[CrossRef]
    [Google Scholar]
  9. Doetsch, R. N. ( 1981; ). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  10. Eilers, H. ( 2000; ). Pelagische Bakteriengesellschaften in der Nordsee: Kultivierung, Diversität und in situ Dynamik. PhD thesis, Universität Bremen, Bremen, Germany.
  11. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  12. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  13. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  14. Galtier, N., Gouy, M. & Gautier, C. ( 1996; ). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548.
    [Google Scholar]
  15. Gascuel, O. ( 1997; ). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14, 685–695.[CrossRef]
    [Google Scholar]
  16. Glöckner, F.-O., Fuchs, B. M. & Amann, R. ( 1999; ). Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65, 3721–3726.
    [Google Scholar]
  17. Hicks, R. E., Amann, R. I. & Stahl, D. A. ( 1992; ). Dual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol 58, 2158–2163.
    [Google Scholar]
  18. Hugh, R. & Leifson, E. ( 1953; ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various negative bacteria. J Bacteriol 66, 24–26.
    [Google Scholar]
  19. Ivanova, T. L., Turova, T. P. & Antonov, A. S. ( 1988; ). DNA–DNA hybridization studies on some purple non sulfur bacteria. Syst Appl Microbiol 10, 259–263.[CrossRef]
    [Google Scholar]
  20. Johnson, J. L. ( 1984; ). DNA reassociation and RNA Hybridization of bacterial nucleic acids. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 8–11. Edited by N. R. Krieg & J. G. Holt. Baltimore, USA: Williams & Wilkins.
  21. Kane, M. D., Poulsen, L. K. & Stahl, D. A. ( 1993; ). Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59, 682–686.
    [Google Scholar]
  22. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  23. Kirchman, D. L. ( 2002; ). The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39, 91–100.
    [Google Scholar]
  24. Kristjánsson, J. K., Hjörleifsdóttir, S., Marteinsson, V. T. & Alfredsson, G. A. ( 1994; ). Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1. Syst Appl Microbiol 17, 44–50.[CrossRef]
    [Google Scholar]
  25. Nedashkovskaya, O. I., Suzuki, M., Vysotskii, M. V. & Mikhailov, V. V. ( 2003; ). Arenibacter troitsensis sp. nov., isolated from marine bottom sediment. Int J Syst Evol Microbiol 53, 1287–1290.[CrossRef]
    [Google Scholar]
  26. Nedashkovskaya, O. I., Kim, S. B., Han, S. K., Lysenko, A. M., Rohde, M., Rhee, M.-S., Frolova, G. M., Falsen, E., Mikhailov, V. V. & Bae, K. S. ( 2004; ). Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int J Syst Evol Microbiol 54, 1017–1023.[CrossRef]
    [Google Scholar]
  27. Reichenbach, H., Kleinig, H. & Achenbach, H. ( 1974; ). The pigment of Flexibacter elegans: novel and chemosystematically useful compounds. Arch Microbiol 101, 131–144.[CrossRef]
    [Google Scholar]
  28. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  29. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  30. Schut, F., De Vries, E. J., Gottschal, J. C., Robertson, B. R., Harder, W., Prins, R. A. & Button, D. K. ( 1993; ). Isolation of typical marine bacteria by dilution culture growth maintenance and characteristics of isolates under laboratory conditions. Appl Environ Microbiol 59, 2150–2159.
    [Google Scholar]
  31. Smibert, R. M. & Krieg, N. R. ( 1981; ). General characterization. In Manual of Methods for General Microbiology, pp. 409–443. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  32. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  33. Yoon, J.-H., Kang, S.-J., Lee, S.-Y., Lee, C.-H. & Oh, T.-K. ( 2005; ). Maribacter dokdonensis sp. nov., isolated from sea water off a Korean island, Dokdo. Int J Syst Evol Microbiol 55, 2051–2055.[CrossRef]
    [Google Scholar]
  34. ZoBell, C. E. ( 1941; ). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4, 41–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65469-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65469-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 790-797

Electron micrographs of strain KT02ds18-6 stained with uranyl acetate (a) or phosphotungstic acid (b). Bars, (a) 0.8 μm; (b) 0.6 μm.



IMAGE

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error