A Gram-negative, rod-shaped bacterium, designated strain EMB320, was isolated from activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. The isolate was strictly aerobic and non-motile. Growth was observed between 10 and 35 °C (optimum 30 °C) and between pH 6.0 and 9.0 (optimum pH 7.0–8.0). The predominant cellular fatty acids of strain EMB320 were C, C 7 and summed feature 3 (C 7 and/or iso-C 2-OH). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strain EMB320 contained ubiquinone-8 (Q-8) as the major respiratory quinone system and 2-hydroxyputrescine and putrescine as the major polyamines, which suggests that it belongs to the . The G+C content of the genomic DNA was 62.7 mol%. Comparative 16S rRNA gene sequence analysis showed that strain EMB320 formed a phyletic lineage distinct from other genera within the family . On the basis of chemotaxonomic data and molecular properties, strain EMB320 represents a novel genus and species within the family , for which the name sp. nov. is proposed. The type strain of is EMB320 (=KCTC 12616 =DSM 17982).


Article metrics loading...

Loading full text...

Full text loading...



  1. Blümel, S., Busse, H.-J., Stolz, A. & Kämpfer, P.(2001).Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 51, 1831–1837.[CrossRef] [Google Scholar]
  2. Busse, H.-J. & Auling, G.(1988). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef] [Google Scholar]
  3. Busse, H.-J., Bunka, S., Hensel, A. & Lubitz, W.(1997). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47, 698–708.[CrossRef] [Google Scholar]
  4. Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., Chandra, S., McGarrell, D. M., Schmidt, T. M. & other authors(2003). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef] [Google Scholar]
  5. Ding, L. & Yokota, A.(2004). Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 54, 2223–2230.[CrossRef] [Google Scholar]
  6. Felsenstein, J.(2002).phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genetics, University of Washington, Seattle, USA.
  7. Finneran, K. T., Johnsen, C. V. & Lovley, D. R.(2003).Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53, 669–673.[CrossRef] [Google Scholar]
  8. Gomori, G.(1955). Preparation of buffers for use in enzyme studies. Methods Enzymol 1, 138–146. [Google Scholar]
  9. Heulin, T., Barakat, M., Christen, R., Lesourd, M., Sutra, L., De Luca, G. & Achouak, W.(2003).Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from subdesert soil in Tunisia. Int J Syst Evol Microbiol 53, 589–594.[CrossRef] [Google Scholar]
  10. Hiraishi, A.(1994). Phylogenetic affiliations of Rhodoferax fermentans and related species of phototrophic bacteria as determined by automated 16S rDNA sequencing. Curr Microbiol 28, 25–29.[CrossRef] [Google Scholar]
  11. Hiraishi, A., Hoshino, Y. & Satoh, T.(1991).Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch Microbiol 155, 330–336. [Google Scholar]
  12. Irgens, R. L., Gosink, J. J. & Staley, J. T.(1996).Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Bacteriol 46, 822–826.[CrossRef] [Google Scholar]
  13. Jeon, C. O., Lee, D. S. & Park, J. M.(2003). Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Res 37, 2195–2205.[CrossRef] [Google Scholar]
  14. Jeon, C. O., Park, W., Ghiorse, W. C. & Madsen, E. L.(2004).Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54, 93–97.[CrossRef] [Google Scholar]
  15. Jeon, C. O., Lim, J. M., Lee, J. M., Xu, L. H., Jiang, C. L. & Kim, C. J.(2005). Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55, 1891–1896.[CrossRef] [Google Scholar]
  16. Kämpfer, P., Steiof, M. & Dott, W.(1991). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251.[CrossRef] [Google Scholar]
  17. Kämpfer, P., Busse, H.-J. & Falsen, E.(2006).Polaromonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 56, 605–608.[CrossRef] [Google Scholar]
  18. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  19. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  20. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  21. Lányí, B.(1987). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67. [Google Scholar]
  22. Leifson, E.(1963). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184. [Google Scholar]
  23. Lu, S., Park, M., Ro, H.-S., Lee, D. S., Park, W. & Jeon, C. O.(2006). Analysis of microbial communities using culture-dependent and -independent approaches in an anaerobic/aerobic SBR reactor. J Microbiol 44, 155–161. [Google Scholar]
  24. Malik, K. A. & Schlegel, H. G.(1981). Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiol Lett 11, 63–67.[CrossRef] [Google Scholar]
  25. Mechichi, T., Stackebrandt, E. & Fuchs, G.(2003).Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing β-proteobacterium. Int J Syst Evol Microbiol 53, 147–152.[CrossRef] [Google Scholar]
  26. Sizova, M. & Panikov, N.(2007).Polaromonas hydrogenivorans sp. nov., a psychrotolerant hydrogen-oxidizing bacterium from Alaskan soil. Int J Syst Evol Microbiol 57, 616–619.[CrossRef] [Google Scholar]
  27. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  28. Spring, S., Jäckel, U., Wagner, M. & Kämpfer, P.(2004).Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54, 99–106.[CrossRef] [Google Scholar]
  29. Stackebrandt, E., Murray, R. G. E. & Trüper, H. G.(1988).Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38, 321–325.[CrossRef] [Google Scholar]
  30. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  31. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  32. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R.(2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73, 5261–5267.[CrossRef] [Google Scholar]
  33. Wen, A., Fegan, M., Hayward, C., Chakraborty, S. & Sly, L. I.(1999). Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49, 567–576.[CrossRef] [Google Scholar]
  34. Willems, A., Gillis, M., Kersters, K., Van Den Broecke, L. & De Ley, J.(1987). Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov. Int J Syst Bacteriol 37, 422–430.[CrossRef] [Google Scholar]
  35. Willems, A., De Ley, J., Gillis, M. & Kersters, K.(1991).Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis) 1969. Int J Syst Bacteriol 41, 445–450.[CrossRef] [Google Scholar]
  36. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K. & De Ley, J.(1992). Transfer of several phytopathogenic Pseudomonas species to Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int J Syst Bacteriol 42, 107–119.[CrossRef] [Google Scholar]
  37. Wolin, E. A., Wolin, M. J. & Wolfe, R. S.(1963). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886. [Google Scholar]
  38. Yoon, J. H., Kang, S. J. & Oh, T. K.(2006).Variovorax dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56, 811–814.[CrossRef] [Google Scholar]

Data & Media loading...


Transmission electron micrograph showing the general morphology of negatively stained cells of strain EMB320 after growth for 5 days at 30 °C on R2A broth. Bar, 1 µm.


Polar lipid TLC sprayed with molybdatophosphoric acid reagent of strain EMB320 . Ascending solvent system: (I) chloroform/methanol/water (65:25:4, by vol.); (II) chloroform/acetic acid/methanol/water (80:13:10:2, by vol.). For detection of polar lipids, molybdatophosphoric acid (PE, PG, DPG and AL), ninhydrin (PE and AL) and molybdenum blue reagent (PG, PE and DPG) were applied. The unknown was inferred as an amino group-containing lipid. PE, Phosphatidylethanolamine; PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; AL, amino group-containing lipid.


Maximum-likelihood (a) and maximum-parsimony (b) trees showing phylogenetic relationships of strain EMB320 and related taxa. ATCC 25416 was used as an outgroup. Bars, 0.1 changes per nucleotide position. [PDF](21 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error