A novel sulfate-reducing bacterium, strain HB1, was isolated from an upflow anaerobic sludge blanket (UASB) reactor treating paper-mill wastewater operated at 37 °C. Cells of strain HB1 were oval to rod-shaped, 1–1.3 μm wide and 2.6–3.5 μm long and Gram-negative. The optimum temperature for growth was 28–30 °C. In the presence of sulfate, the isolate was able to grow on H/acetate, formate, ethanol, propionate, fumarate, succinate, butyrate, crotonate, catechol, benzoate, 4-hydroxybenzoate, palmitate and stearate. The isolate only grew on H when acetate was added as a carbon source; when grown on formate, acetate was not required. Growth was also possible on pyruvate and crotonate without an electron acceptor. The isolate showed very poor growth on acetate. Thiosulfate and sulfate were used as electron acceptors. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain HB1 represents a novel lineage within the ; sequence similarities between strain HB1 and members of other related genera were less than 91 %. Strain HB1 was also distinguished from members of related genera based on differences in several phenotypic characteristics. It is a member of the family . The major cellular fatty acids of strain HB1 were C, iso-C, anteiso-C and C. -Hydroxy fatty acids were also present in the range of C to C, of which C was the most abundant. The G+C content of the DNA was 55.1 mol%. Based on physiological, biochemical and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence analysis, strain HB1 is considered to represent a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is HB1 (=DSM 18734 =JCM 14470).


Article metrics loading...

Loading full text...

Full text loading...



  1. Bak, F. & Widdel, F.(1986). Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. Arch Microbiol 146, 170–176.[CrossRef] [Google Scholar]
  2. Balk, M., Weijma, J., Friedrich, M. W. & Stams, A. J. M.(2003). Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor. Arch Microbiol 179, 315–320. [Google Scholar]
  3. Blumenberg, M., Krüger, M., Nauhaus, K., Talbot, H. M., Oppermann, B. I., Seifert, R., Pape, T. & Michaelis, W.(2006). Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 8, 1220–1227.[CrossRef] [Google Scholar]
  4. Brandt, K. K., Patel, B. K. C. & Ingvorsen, K.(1999).Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. Int J Syst Bacteriol 49, 193–200.[CrossRef] [Google Scholar]
  5. Brysch, K., Schneider, C., Fuchs, G. & Widdel, F.(1987). Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum. Arch Microbiol 148, 264–274.[CrossRef] [Google Scholar]
  6. Campbell, L. L. & Postgate, J. R.(1965). Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29, 359–363. [Google Scholar]
  7. Canfield, D. E., Jorgensen, B. B., Fossing, H., Glud, R., Gundersen, J., Ramsing, N. B., Thamdrup, B., Hansen, J. W., Nielsen, L. P. & Hall, P. O.(1993). Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113, 27–40.[CrossRef] [Google Scholar]
  8. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  9. Colleran, E., Finnegan, S. & Lens, P.(1995). Anaerobic treatment of sulfate-containing waste streams. Antonie van Leeuwenhoek 67, 29–46.[CrossRef] [Google Scholar]
  10. Cravo-Laureau, C., Matheron, R., Joulian, C., Cayol, J. L. & Hirschler-Réa, A.(2004).Desulfatibacillum alkenivorans sp. nov., a novel n-alkene-degrading, sulfate-reducing bacterium, and emended description of the genus Desulfatibacillum. Int J Syst Evol Microbiol 54, 1639–1642.[CrossRef] [Google Scholar]
  11. Glud, R. N., Risgaard-Petersen, N., Thamdrup, B., Fossing, H. & Rysgaard, S.(2000). Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE Greenland). Mar Ecol Prog Ser 206, 59–71.[CrossRef] [Google Scholar]
  12. Gogotova, G. I. & Vainstein, M. B.(1989). Description of sulfate-reducing bacterium Desulfobacterium macestii sp. nov. capable of autotrophic growth. Mikrobiologiia 58, 76–80 (in Russian). [Google Scholar]
  13. Henry, E. A., Devereux, R., Maki, J. S., Gilmour, C. C., Woese, C. R., Mandelco, L., Schauder, R., Remsen, C. C. & Mitchell, R.(1994). Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161, 62–69.[CrossRef] [Google Scholar]
  14. Henstra, A. M. & Stams, A. J. M.(2004). Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70, 7236–7240.[CrossRef] [Google Scholar]
  15. Jørgensen, B. B.(1982). Mineralization of organic matter in the sea bed – the role of sulfate reduction. Nature 296, 643–645.[CrossRef] [Google Scholar]
  16. Kjeldsen, K. U., Loy, A., Jakobsen, T. F., Thomsen, T. R., Wagner, M. & Ingvorsen, K.(2007). Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60, 287–298.[CrossRef] [Google Scholar]
  17. Kohring, L. L., Ringelberg, D. B., Devereux, R., Stahl, D. A., Mittelman, M. W. & White, D. C.(1994). Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett 119, 303–308.[CrossRef] [Google Scholar]
  18. Kostka, J. E., Thamdrup, B., Glud, R. N. & Canfield, D. E.(1999). Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180, 7–21.[CrossRef] [Google Scholar]
  19. Kuever, J., Rainey, F. A. & Widdel, F.(2005). Family I. Desulfobacteraceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part C, pp. 959–960. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  20. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  21. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  22. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  23. Mori, K., Kim, H., Kakegawa, T. & Hanada, S.(2003). A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7, 283–290.[CrossRef] [Google Scholar]
  24. Moussard, H., L'Haridon, S., Tindall, B. J., Banta, A., Schumann, P., Stackebrandt, E., Reysenbach, A.-L. & Jeanthon, C.(2004).Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54, 227–233.[CrossRef] [Google Scholar]
  25. Murray, R. G. E., Doetsch, R. N. & Robinow, C. F.(1994). Determinative and cytological light microscopy. In Methods of General and Molecular Biology, pp. 21–41. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  26. Oude Elferink, S. J. W. H., Lens, P. N. L., Dijkema, C. & Stams, A. J. M.(1994). Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Lett 142, 237–241. [Google Scholar]
  27. Oude Elferink, S. J. W. H., Boschker, H. T. S. & Stams, A. J. M.(1998). Identification of sulfate reducers and Syntrophobacter sp. in anaerobic granular sludge by fatty acid biomarkers and 16S rRNA probing. Geomicrobiol J 15, 3–17.[CrossRef] [Google Scholar]
  28. Platen, H., Temmes, A. & Schink, B.(1990). Anaerobic degradation of acetone by Desulfococcus biacutus sp. nov. Arch Microbiol 154, 355–361. [Google Scholar]
  29. Rabus, R., Hansen, T. A. & Widdel, F.(2006). Dissimilatory sulfate- and sulfur-reducing prokaryotes. In The Prokaryotes. A Handbook on the Biology of Bacteria, 3rd edn, vol. 2, pp 659–768. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  30. Rees, G. N. & Patel, B. K.(2001).Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizing, sulfate-reducing bacterium isolated from sediments of a freshwater lake. Int J Syst Evol Microbiol 51, 1911–1916.[CrossRef] [Google Scholar]
  31. Roest, K., Heilig, H. G., Smidt, H., de Vos, W. M., Stams, A. J. & Akkermans, A. D.(2005). Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst Appl Microbiol 28, 175–185.[CrossRef] [Google Scholar]
  32. Rysgaard, S., Thamdrup, B., Risgaard-Petersen, N., Fossing, H., Berg, P., Christensen, P. B. & Dalsgaard, T.(1998). Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 175, 261–276.[CrossRef] [Google Scholar]
  33. Schnell, S., Bak, F. & Pfennig, N.(1989). Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini. Arch Microbiol 152, 556–563.[CrossRef] [Google Scholar]
  34. Scholten, J. C. & Stams, A. J. M.(1995). The effect of sulfate and nitrate on methane formation in a freshwater sediment. Antonie van Leeuwenhoek 68, 309–315.[CrossRef] [Google Scholar]
  35. Stams, A. J. M., Veenhuis, M., Weenk, G. H. & Hansen, T. A.(1983). Occurrence of polyglucose as a storage polymer in Desulfovibrio species and Desulfobulbus propionicus. Arch Microbiol 136, 54–59.[CrossRef] [Google Scholar]
  36. Stams, A. J. M., van Dijk, J. B., Dijkema, C. & Plugge, C. M.(1993). Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59, 1114–1119. [Google Scholar]
  37. Stieb, M. & Schink, B.(1989). Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch Microbiol 151, 126–132.[CrossRef] [Google Scholar]
  38. Szewzyk, R. & Pfennig, N.(1987). Complete oxidation of catechol by strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch Microbiol 147, 163–168.[CrossRef] [Google Scholar]
  39. Thamdrup, B. & Canfield, D. E.(1996). Pathways of carbon oxidation in continental margin sediments of central Chile. Limnol Oceanogr 41, 1629–1650.[CrossRef] [Google Scholar]
  40. Trüper, H. G. & Schlegel, H. G.(1964). Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30, 225–238.[CrossRef] [Google Scholar]
  41. Widdel, F.(1980).Anaerober Abbau von Fettsäuren und Benzoesäure durch neu Isolierte Arten Sulfat-reduzierender Bakterien. PhD thesis, Göttingen University, Germany (in German).
  42. Widdel, F. & Bak, F.(1992). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn., vol. 4, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  43. Zeikus, J. G., Dawson, M. A., Thompson, T. E., Ingvorsen, K. & Hatchikian, E. C.(1983). Microbial ecology of volcanic sulfidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129, 1159–1169. [Google Scholar]
  44. Zoetendal, E. G., Akkermans, A. D. L. & de Vos, W. M.(1998). Temperature gradient gel electrophoresis from human fecal samples reveals stable and host-specific communities of bacteria. Appl Environ Microbiol 64, 3854–3859. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error