1887

Abstract

A new isolate of a lithoautotrophic nitrite-oxidizing bacterium was obtained from internal corrosion deposits from a steel pipeline of the Moscow heating system. The organism oxidized nitrite as the sole energy source and fixed carbon dioxide as the only carbon source. The cells were extremely pleomorphic: loosely wound spirals, slightly curved and even straight rods were detected, as well as coccoid cells. The highest rate of nitrite consumption (1.5 mM nitrite as substrate) was measured at 42 °C, with a temperature range of 28–44 °C. In enrichment cultures with sp. as an accompanying organism, optimal oxidation of 5.8 mM nitrite occurred at 45 °C, with a range of 28–48 °C. Neither pyruvate nor yeast extract stimulated nitrification. Organotrophic growth was not observed. Phylogenetic analysis of 16S rRNA gene sequences revealed that the novel isolate represents a new sublineage of the genus . On the basis of physiological, chemotaxonomic and molecular characteristics, the name ‘ Nitrospira bockiana’ is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65379-0
2008-01-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/1/242.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65379-0&mimeType=html&fmt=ahah

References

  1. Altmann, D., Stief, P., Amann, R., De Beer, D. & Schramm, A. ( 2003; ). In situ distribution and activity of nitrifying bacteria in freshwater sediment. Environ Microbiol 5, 798–803.[CrossRef]
    [Google Scholar]
  2. Amann, R. I. ( 1995; ). In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual, pp. 1–15. Edited by A. D. C. Akkeman, J. D. van Elsas & F. J. de Bruigin. Dortrecht: Kluwer Academic Publishers.
  3. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  4. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  5. Bartosch, S., Wolgast, I., Spieck, E. & Bock, E. ( 1999; ). Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase. Appl Environ Microbiol 65, 4126–4133.
    [Google Scholar]
  6. Bartosch, S., Hartwig, C., Spieck, E. & Bock, E. ( 2002; ). Immunological detection of Nitrospira-like bacteria in various soils. Microb Ecol 43, 26–33.[CrossRef]
    [Google Scholar]
  7. Burrell, P. C., Keller, J. & Blackall, L. L. ( 1998; ). Microbiology of a nitrite-oxidizing bioreactor. Appl Environ Microbiol 64, 1878–1883.
    [Google Scholar]
  8. Daims, H., Brühl, A., Amann, R., Schleifer, K.-H. & Wagner, M. ( 1999; ). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434–444.[CrossRef]
    [Google Scholar]
  9. Daims, H., Nielsen, J. L., Nielsen, P. H., Schleifer, K. H. & Wagner, M. ( 2001; ). In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67, 5273–5284.[CrossRef]
    [Google Scholar]
  10. Daims, H., Stoecker, K. & Wagner, M. ( 2005; ). Fluorescence in situ hybridization for the detection of prokaryotes. In Advanced Methods in Molecular Microbial Ecology, pp. 213–239. Edited by A. M. Osborn & C. J. Smith. Abingdon, UK: Bios-Garland.
  11. Ehrich, S., Behrens, D., Lebedeva, E., Ludwig, W. & Bock, E. ( 1995; ). A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol 164, 16–23.[CrossRef]
    [Google Scholar]
  12. Freitag, T. E., Chang, L., Clegg, C. D. & Prosser, J. I. ( 2005; ). Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Appl Environ Microbiol 71, 8323–8334.[CrossRef]
    [Google Scholar]
  13. Garrity, G. M. & Holt, J. G. ( 2001; ). Phylum BVIII. Nitrospirae phy. nov. In Bergey's Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototrophic Bacteria, pp. 451–464. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York, NY: Springer-Verlag.
  14. Hovanec, T. A., Taylor, L. T., Blakis, A. & DeLong, E. F. ( 1998; ). Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl Environ Microbiol 64, 258–264.
    [Google Scholar]
  15. Juretschko, S., Timmermann, G., Schmid, M., Schleifer, K.-H., Pommerening-Röser, A., Koops, H.-P. & Wagner, M. ( 1998; ). Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64, 3042–3051.
    [Google Scholar]
  16. Kanokratana, P., Chanapan, S., Pootanakit, K. & Eurwilaichitr, L. ( 2004; ). Diversity and abundance of bacteria and archaea in the Bor Khlueng hot spring in Thailand. J Basic Microbiol 44, 430–444.[CrossRef]
    [Google Scholar]
  17. Kindaichi, T., Ito, T. & Okabe, S. ( 2004; ). Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol 70, 1641–1650.[CrossRef]
    [Google Scholar]
  18. Könneke, M., Bernhard, A. E., de la Torre, J. R., Wolker, C. B., Waterbury, J. B. & Stahl, D. A. ( 2005; ). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546.[CrossRef]
    [Google Scholar]
  19. Lebedeva, E. V., Alawi, M., Fiencke, C., Namsaraev, B., Bock, E. & Spieck, E. ( 2005; ). Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone. FEMS Microbiol Ecol 54, 297–306.[CrossRef]
    [Google Scholar]
  20. Lipski, A., Spieck, E., Makolla, A. & Altendorf, K. ( 2001; ). Fatty acid profiles of nitrite-oxidizing bacteria reflect their phylogenetic heterogeneity. Syst Appl Microbiol 24, 377–384.[CrossRef]
    [Google Scholar]
  21. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhu, K., Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  22. Maixner, F., Noguera, D. R., Anneser, B., Stoecker, K., Wegl, G., Wagner, M. & Daims, H. ( 2006; ). Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ Microbiol 8, 1487–1495.[CrossRef]
    [Google Scholar]
  23. Manz, W., Amann, R. I., Ludwig, W., Wagner, M. & Schleifer, K. H. ( 1992; ). Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15, 593–600.[CrossRef]
    [Google Scholar]
  24. Meincke, M., Bock, E., Kastrau, D. & Kroneck, P. M. H. ( 1992; ). Nitrite oxidoreductase from Nitrobacter hamburgensis: redox centers and their catalytic role. Arch Microbiol 158, 127–131.[CrossRef]
    [Google Scholar]
  25. Murray, R. G. & Stackebrandt, E. ( 1995; ). Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45, 186–187.[CrossRef]
    [Google Scholar]
  26. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. ( 1993; ). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695–700.
    [Google Scholar]
  27. Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H. & Wawer, C. ( 1998; ). Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In Molecular Microbial Ecology Manual, vol. 3.4.4, pp. 1–27. Edited by A. D. L. Akkermans, J. D. van Elsas, and F. J. de Bruijn. Drodrecht: Kluwer.
  28. Noll, M., Matthies, D., Frenzel, P., Derakshani, M. & Liesack, W. ( 2005; ). Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol 7, 382–395.[CrossRef]
    [Google Scholar]
  29. Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M. C., Koops, H.-P. & Wagner, M. ( 2000; ). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66, 5368–5382.[CrossRef]
    [Google Scholar]
  30. Rittmann, B. E., Regan, J. M. & Stahl, D. A. ( 1994; ). Nitrification as a source of soluble organic substrate in biological treatment. Water Sci Technol 30, 1–8.
    [Google Scholar]
  31. Rozanova, E. P., Dubinina, G. A., Lebedeva, E. V., Suntsova, L. A., Lipovskich, V. M. & Tsvetkov, N. N. ( 2003; ). Microorganisms in heat supply systems and internal corrosion of steel pipelines. Microbiology English translation of Microbiologiia 72, 212–220.
    [Google Scholar]
  32. Schmidt, E. L. & Belser, L. W. ( 1982; ). Nitrifying bacteria. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties (American Society of Agronomy Monograph no. 9), pp. 1027–1042. Edited by A. L. Page, R. H. Miller & D. R. Keeney. Madison: American Society of Agronomy.
  33. Spieck, E. & Bock, E. ( 2001; ). Genus Nitrospira. In Bergey's Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototrophic Bacteria, pp. 451–453. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York, NY: Springer-Verlag.
  34. Spieck, E., Ehrich, S., Aamand, J. & Bock, E. ( 1998; ). Isolation and immunocytochemical location of the nitrite-oxidizing system in Nitrospira moscoviensis. Arch Microbiol 169, 225–230.[CrossRef]
    [Google Scholar]
  35. Spieck, E., Hartwig, C., McCormack, I., Maixner, F., Wagner, M., Lipski, A. & Daims, H. ( 2006; ). Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ Microbiol 8, 405–415.[CrossRef]
    [Google Scholar]
  36. Stein, L. Y., La Duc, M. T., Grundl, T. J. & Nealson, K. H. ( 2001; ). Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3, 10–18.[CrossRef]
    [Google Scholar]
  37. Teske, A., Alm, E., Regan, J. M., Toze, S., Rittmann, B. E. & Stahl, D. A. ( 1994; ). Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 176, 6623–6630.
    [Google Scholar]
  38. Wagner, M., Rath, G., Koops, H.-P., Flood, J. & Amann, R. ( 1996; ). In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci Technol 34, 237–244.
    [Google Scholar]
  39. Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B. & Schlosser, U. ( 1986; ). Nitrospira marina gen. nov., sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 144, 1–7.[CrossRef]
    [Google Scholar]
  40. Watson, S. W., Bock, E., Harms, H., Koops, H.-P. & Hooper, A. B. ( 1989; ). Nitrifying bacteria. In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 1808–1834. Edited by J. T. Stanley, M. P. Bryant, N. Pfennig & J. G. Holt. Baltimore, MD: Williams & Wilkins Co.
  41. Yoon, J. H., Kim, I. G., Lee, M. H. & Oh, T. K. ( 2005; ). Nocardioides kribbensis sp. nov., isolated from an alkaline soil. Int J Syst Evol Microbiol 55, 1611–1614.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65379-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65379-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 242 - 250

DGGE profile of increasing purity of enrichment 4 and enrichment 5 at different stages and of the final isolate of ‘ Nitrospira bockiana’. [ PDF] (52 KB)



PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error