Extremely halophilic archaea were cultivated from smooth and pustular microbial mats collected from Hamelin Pool, Shark Bay, Western Australia. On the basis of morphology, two phenotypes were present and 16S rRNA gene sequence analysis indicated that all strains were most closely related to members of the genus (98.1–99.4 % similarity). One representative strain from each phenotype was selected for further taxonomic characterization. Strain SA5, isolated from the smooth mat, formed small (∼1 mm diameter), red, translucent colonies on agar medium and strain PA12, isolated from the pustular mat, formed large (3–5 mm diameter), pink, mucoid, domed colonies. Both strains grew in media with 1.7–5.1 M NaCl, required at least 0.2 M Mg for growth and had pH optima of 7.4. The 16S rRNA gene similarity between strains SA5 and PA12 was 97.1 %. Physiological properties, G+C content and polar lipid composition supported placement of both strains in the genus . Phenotypic analysis indicated that the two strains were distinct from each other and from all other members of the genus. This was confirmed by the low DNA–DNA relatedness between strains SA5 and PA12 (18–30 %) and between both strains and all other recognized species. Two novel species of the genus are proposed to accommodate these novel isolates, sp. nov. (type strain SA5=JCM 14791=ATCC BAA-1513=UNSW 104100) and sp. nov. (type strain PA12=JCM 14792=ATCC BAA-1512=UNSW 104200).


Article metrics loading...

Loading full text...

Full text loading...



  1. Allen, M. A.(2006).An astrobiology-focused analysis of microbial mat communities from Hamelin Pool, Shark Bay, Western Australia. PhD thesis, University of New South Wales, Australia (http://www.library.unsw.edu.au/∼thesis/adt-NUN/public/adt-NUN20070215.101356/index.html. ).
  2. Arp, G., Reimer, A. & Reitner, J.(2001). Photosynthesis-induced biofilm calcification and calcium concentrations in phanerozoic oceans. Science 292, 1701–1704.[CrossRef] [Google Scholar]
  3. Asker, D. & Ohta, Y.(2002).Haloferax alexandrinus sp. nov., an extremely halophilic canthaxanthin-producing archaeon from a solar saltern in Alexandria (Egypt). Int J Syst Evol Microbiol 52, 729–738.[CrossRef] [Google Scholar]
  4. Burns, B. P., Goh, F., Allen, M. & Neilan, B. A.(2004). Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ Microbiol 6, 1096–1101.[CrossRef] [Google Scholar]
  5. Elshahed, M. S., Savage, K. N., Oren, A., Gutierrez, M. C., Ventosa, A. & Krumholz, L. R.(2004).Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring. Int J Syst Evol Microbiol 54, 2275–2279.[CrossRef] [Google Scholar]
  6. Enache, M., Itoh, T., Kamekura, M., Teodosiu, G. & Dumitru, L.(2007).Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake. Int J Syst Evol Microbiol 57, 393–397.[CrossRef] [Google Scholar]
  7. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  8. Goh, F., Leuko, S., Allen, M. A., Bowman, J. P., Kamekura, M., Neilan, B. A. & Burns, B. P.(2006).Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst Evol Microbiol 56, 1323–1329.[CrossRef] [Google Scholar]
  9. Gutierrez, M. C., Kamekura, M., Holmes, M. L., Dyall-Smith, M. L. & Ventosa, A.(2002). Taxonomic description of Haloferax sp. (“H. alicantei”) strain Aa 2.2: description of Haloferax lucentensis sp. nov. Extremophiles 6, 479–483.[CrossRef] [Google Scholar]
  10. Jackman, P. J. H.(1987). Microbial systematics based on electrophoretic whole-cell protein patterns. Methods Microbiol 19, 209–225. [Google Scholar]
  11. Juez, G., Rodriguez-Valera, F., Ventosa, A. & Kushner, D. J.(1986).Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec. nov., two new species of extremely halophilic archaebacteria. Syst Appl Microbiol 8, 75–79.[CrossRef] [Google Scholar]
  12. Kamekura, M.(1993). Lipids of extreme halophiles. In The Biology of Halophilic Bacteria, pp. 135–161. Edited by R. H. Vreeland & L. I. Hochstein. Boca Raton, FL: CRC Press.
  13. Kamekura, M., Mizuki, T., Usami, R., Yoshida, Y., Horikoshi, K. & Vreeland, R. H.(2004). The potential use of signature bases from 16S rRNA gene sequences to aid the assignment of microbial strains to genera of halobacteria. In Halophilic Microorganisms, pp. 77–100. Edited by A. Ventosa. Berlin: Springer.
  14. Leuko, S., Goh, F., Allen, M. A., Burns, B. P., Walter, M. R. & Neilan, B. A.(2007). Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mats. Extremophiles 11, 203–210.[CrossRef] [Google Scholar]
  15. Logan, B. W., Hoffman, P. & Gebelein, C. D.(1974). Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. Am Assoc Petroleum Geol Mem 22, 140–194. [Google Scholar]
  16. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  17. Mullakhanbhai, M. F. & Larsen, H.(1975).Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104, 207–214.[CrossRef] [Google Scholar]
  18. Oren, A., Ventosa, A. & Grant, W. D.(1997). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef] [Google Scholar]
  19. Robinson, J. L., Pyzyna, B., Atrasz, R. G., Henderson, C. A., Morrill, K. L., Burd, A. M., DeSoucy, E., Fogleman, R. E., III, Naylor, J. B. & other authors(2005). Growth kinetics of extremely halophilic Archaea (family Halobacteriaceae) as revealed by Arrhenius plots. J Bacteriol 187, 923–929.[CrossRef] [Google Scholar]
  20. Rodriguez-Valera, F., Juez, G. & Kushner, D. J.(1983).Halobacterium mediterranei spec. nov., a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 4, 369–381.[CrossRef] [Google Scholar]
  21. Stan-Lotter, H., Pfaffenhuemer, M., Legat, A., Busse, H. J., Radax, C. & Gruber, C.(2002).Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52, 1807–1814.[CrossRef] [Google Scholar]
  22. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  23. Tindall, B. J.(1992). The family Halobacteriaceae. In The Prokaryotes, 2nd edn, vol. 1, pp. 768–808. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer-Verlag.
  24. Tindall, B. J., Tomlinson, G. A. & Hochstein, L. I.(1989). Transfer of Halobacterium denitrificans (Tomlinson, Jahnke, and Hochstein) to the genus Haloferax as Haloferax denitrificans comb. nov. Int J Syst Bacteriol 39, 359–360.[CrossRef] [Google Scholar]
  25. Tomlinson, G. A., Jahnke, L. L. & Hochstein, L. I.(1986).Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. Int J Syst Bacteriol 36, 66–70.[CrossRef] [Google Scholar]
  26. Usami, R., Fukushima, T., Mizuki, T., Yoshida, Y., Inoue, A. & Horikoshi, K.(2005). Organic solvent tolerance of halophilic archaea, Haloarcula strains: effects of NaCl concentration on the tolerance and polar lipid composition. J Biosci Bioeng 99, 169–174.[CrossRef] [Google Scholar]
  27. Ventosa, A.(2001). Genus V. Haloferax. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 315–318. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  28. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Oren, A., Zhou, P.-J. & Wu, M.(2007).Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57, 717–720.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 4, pp. 798-802

Phase-contrast micrographs of late-exponential-phase cells of SA5 and PA12 (Fig. S1), SDS-PAGE patterns of whole-cell proteins (Fig. S2) and TLC analysis of polar lipids (Fig. S3) of SA5 and PA12 . [PDF](148 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error