Three alkaliphilic and moderately halophilic strains designated K1-5, K1-10 and B1-1, characterized by optimal growth at pH 9.0–10.0 and at 3–7 % (w/v) NaCl, were isolated from extremely shallow, alkaline soda lakes located in Hungary. Cells of the strains are Gram-positive, straight rods and form a central to subterminal, ellipsoidal endospore. The isolates are strictly aerobic, catalase-positive, oxidase-negative and contain a peptidoglycan of type A1 based on -diaminopimelic acid. In strain K1-5, menaquinone-7 (MK-7) is the predominant isoprenoid quinone and anteiso-C is the major cellular fatty acid. The DNA G+C content of strain K1-5 is 42.9 mol%. 16S rRNA gene-based phylogenetic analysis revealed that the strains exhibit levels of sequence similarity of less than 95.8 % to known species. According to the polyphasic characterization, the strains represent a novel species, for which the name sp. nov. is proposed. The type strain is K1-5 (=DSM 18675 =CCM 7447 =NCAIM B002265).


Article metrics loading...

Loading full text...

Full text loading...



  1. Agnew, M. D., Koval, S. F. & Jarrell, K. F.(1995). Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18, 221–230.[CrossRef] [Google Scholar]
  2. Barrow, G. I. & Feltham, R. K. A.(2003).Cowan and Steel's Manual for the Identification of Medical Bacteria. Cambridge: Cambridge University Press.
  3. Borsodi, A. K., Micsinai, A., Kovács, G., Tóth, E., Schumann, P., Kovács, A. L., Böddi, B. & Márialigeti, K.(2003).Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 53, 555–561.[CrossRef] [Google Scholar]
  4. Borsodi, A. K., Micsinai, A., Rusznyák, A., Vladár, P., Kovács, G., Tóth, E. M. & Márialigeti, K.(2005). Diversity of alkaliphilic and alkalitolerant bacteria cultivated from decomposing reed rhizomes in a Hungarian soda lake. Microb Ecol 50, 9–18.[CrossRef] [Google Scholar]
  5. Borsodi, A. K., Makk, J., Rusznyák, A., Vajna, B., Taba, Gy. & Márialigeti, K.(2007). Phenotypic characterization and molecular taxonomic studies on Bacillus and related isolates from Phragmites australis periphyton. Aquat Bot 86, 243–252.[CrossRef] [Google Scholar]
  6. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  7. Claus, D.(1992). A standardized Gram staining procedure. World J Microbiol Biotechnol 8, 451–452.[CrossRef] [Google Scholar]
  8. Collins, M. D., Pirouz, T., Goodfellow, M. & Minnikin, D. E.(1977). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100, 221–230.[CrossRef] [Google Scholar]
  9. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  10. De Soete, G.(1983). A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48, 621–626.[CrossRef] [Google Scholar]
  11. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  12. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  13. Groth, I., Schumann, P., Weiss, N., Martin, K. & Rainey, F. A.(1996).Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46, 234–239.[CrossRef] [Google Scholar]
  14. Groth, I., Schumann, P., Rainey, F. A., Martin, K., Schietze, B. & Augsten, K.(1997).Demetria terragena gen. nov. sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47, 1129–1133.[CrossRef] [Google Scholar]
  15. Hasegawa, T., Takizawa, M. & Tanida, S.(1983). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29, 319–322.[CrossRef] [Google Scholar]
  16. Horikoshi, K.(1996). Alkaliphiles – from an industrial point of view. FEMS Microbiol Rev 18, 259–270. [Google Scholar]
  17. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  18. Jones, B. E., Grant, W. D., Duckworth, A. W. & Owenson, G. G.(1998). Microbial diversity of soda lakes. Extremophiles 2, 191–200.[CrossRef] [Google Scholar]
  19. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  20. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  21. Lim, J.-M., Jeon, C. O., Lee, S.-M., Lee, J. C., Xu, L.-H., Jiang, C.-L. & Kim, C.-J.(2006a).Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 56, 373–377.[CrossRef] [Google Scholar]
  22. Lim, J.-M., Jeon, C. O. & Kim, C.-J.(2006b).Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 56, 2903–2908.[CrossRef] [Google Scholar]
  23. Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J. & Woese, C. R.(1996). The Ribosomal Database Project (RDP). Nucleic Acids Res 24, 82–85.[CrossRef] [Google Scholar]
  24. Martins, R. F., Davids, W., Al-Soud, W. A., Levander, F., Radström, P. & Hatti-Kaul, R.(2001). Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5, 135–144.[CrossRef] [Google Scholar]
  25. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  26. Minnikin, D. E., Collins, M. D. & Goodfellow, M.(1979). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47, 87–95.[CrossRef] [Google Scholar]
  27. Murray, R. G. E., Doetsch, R. N. & Robinow, C. F.(1994). Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  28. Nielsen, P., Fritze, D. & Priest, F. G.(1995). Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141, 1745–1761.[CrossRef] [Google Scholar]
  29. Nogi, Y., Takami, H. & Horikoshi, K.(2005). Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55, 2309–2315.[CrossRef] [Google Scholar]
  30. Rees, H. C., Grant, W. D., Jones, B. E. & Heaphy, S.(2004). Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8, 63–71.[CrossRef] [Google Scholar]
  31. Romano, I., Lama, L., Nicolaus, B., Gambacorta, A. & Giordano, A.(2005).Bacillus saliphilus sp. nov., isolated from a mineral pool in Campania, Italy. Int J Syst Evol Microbiol 55, 159–163.[CrossRef] [Google Scholar]
  32. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  33. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 603–711. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  34. Stead, D. E., Sellwood, J. E., Wilson, J. & Viney, I.(1992). Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72, 315–321.[CrossRef] [Google Scholar]
  35. Strunk, O. & Ludwig, W.(1995).arb – a software environment for sequence data. Department of Microbiology, Technical University of Munich, Germany. http://www.arb-home.de/
  36. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  37. Yamada, K. & Komagata, K.(1972). Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J Gen Appl Microbiol 18, 399–416.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 4, pp. 845 - 851

Biolog GP2 carbon source utilization of strains of sp. nov. [PDF](60 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error