The phylum is currently represented mostly by environmental 16S rRNA gene sequences, and the phylum so far contains only four species with validly published names, , , and . In the present study, two novel strains of acidobacteria were isolated. High-throughput enrichments were set up with the MicroDrop technique using an alpine calcareous soil sample and a mixture of polymeric carbon compounds supplemented with signal compounds. This approach yielded a novel, previously unknown acidobacterium, strain Jbg-1. The second strain, Wbg-1, was recovered from a co-culture with a methanotrophic bacterium established from calcareous forest soil. Both strains represent members of subdivision 1 of the phylum and are closely related to each other (98.0 % 16S rRNA gene sequence similarity). At a sequence similarity of 93.8–94.7 %, strains Jbg-1 and Wbg-1 are only distantly related to the closest described relative, KBS 63, and accordingly are described as members of the novel genus gen. nov. Based on the DNA–DNA relatedness between strains Jbg-1 and Wbg-1 of 11.5–13.6 % and their chemotaxonomic and phenotypic characteristics, the two strains are assigned to two separate species, sp. nov. (the type species), with strain Jbg-1 (=ATCC BAA-1329 =DSM 18101) as the type strain, and sp. nov., with strain Wbg-1 (=ATCC BAA-1497 =DSM 19364) as the type strain. The two novel species are adapted to low carbon concentrations and to neutral to slightly acidic conditions.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. Amann, R. I., Ludwig, W. & Schleifer, K.-H.(1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169. [Google Scholar]
  3. Angle, J. S., McGrath, S. P. & Chaney, R. L.(1991). New culture medium containing ionic concentrations of nutrients similar to concentrations found in the soil solution. Appl Environ Microbiol 57, 3674–3676. [Google Scholar]
  4. Bak, F., Finster, K. & Rothfuß, F.(1992). Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch Microbiol 157, 529–534. [Google Scholar]
  5. Barns, S. M., Takala, S. L. & Kuske, C. L.(1999). Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65, 1731–1737. [Google Scholar]
  6. Barns, S. M., Cain, E. C., Sommerville, L. & Kuske, C. L.(2007).Acidobacteria phylum sequences in uranium-contaminated subsurface sediments expand the known diversity within the phylum. Appl Environ Microbiol 73, 3113–3116.[CrossRef] [Google Scholar]
  7. Bast, E.(2001). Lichtmikroskopische Untersuchung von Mikroorganismen. In Mikrobiologische Methoden, 2nd edn, pp. 203–263. Edited by E. Bast. Heidelberg, Berlin: Spektrum (in German).
  8. Bruns, A., Nübel, U., Cypionka, H. & Overmann, J.(2003a). Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl Environ Microbiol 69, 1980–1989.[CrossRef] [Google Scholar]
  9. Bruns, A., Hoffelner, H. & Overmann, J.(2003b). A novel approach for high throughput assays and the isolation of planktonic bacteria. FEMS Microbiol Ecol 45, 161–171.[CrossRef] [Google Scholar]
  10. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  11. Chan, O. C., Yang, X., Fu, Y., Feng, Z., Sha, L., Casper, P. & Zou, X.(2006). 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol Ecol 58, 247–259.[CrossRef] [Google Scholar]
  12. Chin, K.-J., Hahn, D., Hengstmann, U., Liesack, W. & Janssen, P. H.(1999). Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl Environ Microbiol 65, 5042–5049. [Google Scholar]
  13. Coates, J. D., Ellis, D. J., Gaw, C. V. & Lovley, D. R.(1999).Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49, 1615–1622.[CrossRef] [Google Scholar]
  14. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  15. Dunbar, J., Takala, S., Barns, S. M., Davis, J. A. & Kuske, C. R.(1999). Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65, 1662–1669. [Google Scholar]
  16. Dunfield, P. F., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A. & Dedysh, S. N.(2003).Methylocella silvestris sp. nov., a novel methanotrophic bacterium isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53, 1231–1239.[CrossRef] [Google Scholar]
  17. Eichorst, S. A., Breznak, J. A. & Schmidt, T. M.(2007). Isolation and characterization of bacteria from soil that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73, 2708–2717.[CrossRef] [Google Scholar]
  18. Felsenstein, J.(1989).phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166. [Google Scholar]
  19. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors)(1994).Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  20. Hugenholtz, P., Goebel, B. M. & Pace, N. R.(1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180, 4765–4774. [Google Scholar]
  21. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  22. Janssen, P. H.(2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72, 1719–1728.[CrossRef] [Google Scholar]
  23. Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A. & Janssen, P. H.(2003). Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69, 7210–7215.[CrossRef] [Google Scholar]
  24. Kishimoto, N., Kosako, Y. & Tano, T.(1991).Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22, 1–7.[CrossRef] [Google Scholar]
  25. Knief, C., Lipski, A. & Dunfield, P. F.(2003). Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69, 6703–6714.[CrossRef] [Google Scholar]
  26. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  27. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  28. Liesack, W., Bak, F., Kreft, J. U. & Stackebrandt, E.(1994).Holophaga foetida gen. nov., sp. nov., a new homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162, 85–90. [Google Scholar]
  29. Ludwig, W., Bauer, S. H., Bauer, M., Held, I., Kirchhof, G., Schulze, R., Huber, I., Spring, S., Hartmann, A. & Schleifer, K.-H.(1997). Detection and in situ identification of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153, 181–190.[CrossRef] [Google Scholar]
  30. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K.-H.(1998). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef] [Google Scholar]
  31. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  32. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  33. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  34. Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H. & Wawer, C.(1997). Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In Molecular Microbial Ecology Manual, vol. 3.4.4, pp. 1–27. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. Dordrecht: Kluwer Academic.
  35. Ostle, A. G. & Holt, J. G.(1982). Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241. [Google Scholar]
  36. Rosselló-Mora, R. & Amann, R.(2001). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef] [Google Scholar]
  37. Sait, M., Hugenholtz, P. & Janssen, P. H.(2002). Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4, 654–666.[CrossRef] [Google Scholar]
  38. Sait, M., Davis, K. E. R. & Janssen, P. H.(2006). Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72, 1852–1857.[CrossRef] [Google Scholar]
  39. Spurr, A. R.(1969). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.[CrossRef] [Google Scholar]
  40. Stevenson, B. S., Eichorst, S. A., Wertz, J. T., Schmidt, T. M. & Breznak, J. A.(2004). New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70, 4748–4755.[CrossRef] [Google Scholar]
  41. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  42. Whittenbury, R., Phillips, K. C. & Wilkinson, J. F.(1970). Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61, 205–218.[CrossRef] [Google Scholar]
  43. Widdel, F., Kohring, G.-W. & Mayer, F.(1983). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134, 286–294.[CrossRef] [Google Scholar]
  44. Zul, D., Denzel, S., Kotz, A. & Overmann, J.(2007). Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity. Appl Environ Microbiol 73, 6916–6929.[CrossRef] [Google Scholar]

Data & Media loading...


[PDF file of Supplementary Tables S1 and S2](124 KB)


Affiliation of strains Jbg-1 and Wbg-1 calculated on the basis of 16S rRNA gene sequence information using the neighbour-joining algorithm, including an extended set of reference sequences. [PDF](343 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error