A Gram-negative, motile, rod-shaped bacterial strain, KSL-125, was isolated from an alkaline soil from Kwangchun, Korea, and its taxonomic position was investigated in a polyphasic study. Strain KSL-125 grew optimally at 30 °C, at pH 7.5–8.0 and in the presence of 0.5 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain KSL-125 joins the cluster comprising the two species at a bootstrap resampling value of 100 %. The values for similarity between the 16S rRNA gene sequence of strain KSL-125 and those of the type strains of the two species were 98.9–99.0 %. Strain KSL-125 contained Q-10 as the predominant ubiquinone and C 6, C 7 and/or iso-C 2-OH and C 7 as the major fatty acids. The major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and an unidentified phospholipid. The DNA G+C content was 65.1 mol%. Strain KSL-125 was distinguishable from the two recognized species on the basis of differential phenotypic properties, DNA–DNA relatedness data and repetitive-sequence-based PCR genomic fingerprinting patterns. The phenotypic, phylogenetic and genetic data showed that strain KSL-125 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KSL-125 (=KCTC 12482 =DSM 17328).


Article metrics loading...

Loading full text...

Full text loading...



  1. Cohen-Bazire, G., Sistrom, W. R. & Stanier, R. Y.(1957). Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cell Comp Physiol 49, 25–68.[CrossRef] [Google Scholar]
  2. Cowan, S. T. & Steel, K. J.(1965).Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  3. Geueke, B., Busse, H.-J., Fleischmann, T., Kämpfer, P. & Kohler, H.-P. E.(2007). Description of Sphingosinicella xenopeptidilytica sp. nov., a β-peptide-degrading species, and emended descriptions of the genus Sphingosinicella and Sphingosinicella microcystinivorans. Int J Syst Evol Microbiol 57, 107–113.[CrossRef] [Google Scholar]
  4. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  5. Lanyi, B.(1987). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67. [Google Scholar]
  6. Maruyama, T., Park, H.-D., Ozawa, K., Tanaka, Y., Sumino, T., Hamana, K., Hiraishi, A. & Kato, K.(2006).Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56, 85–89.[CrossRef] [Google Scholar]
  7. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H.(1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef] [Google Scholar]
  8. Rademaker, J. L. W., Louws, F. J. & de Bruijn, F. J.(1998). Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In Molecular Microbial Ecology Manual, supplement 3, chapter 3.4.3, pp. 1–26. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. Dordrecht: Kluwer.
  9. Rajashekara, G., Koeuth, T., Nevile, S., Back, A., Nagaraja, K. V., Lupski, J. R. & Kapur, V.(1998). SERE, a widely dispersed bacterial repetitive DNA element. J Med Microbiol 47, 489–497.[CrossRef] [Google Scholar]
  10. Saito, T., Okano, K., Park, H.-D., Itayama, T., Inamori, Y., Neilan, B. A., Burns, B. P. & Sugiura, N.(2003). Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiol Lett 229, 271–276.[CrossRef] [Google Scholar]
  11. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, Technical Note 101. Newark, DE: MIDI.
  12. Sneath, P. H. A. & Sokal, R. R.(1973).Numerical Taxonomy. San Francisco: W. H. Freeman.
  13. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  14. Versalovic, J., Schneider, M., de Brujin, F. J. & Lupski, J. R.(1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5, 25–40. [Google Scholar]
  15. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  16. Yoon, J.-H., Kim, H., Kim, S.-B., Kim, H.-J., Kim, W. Y., Lee, S. T., Goodfellow, M. & Park, Y.-H.(1996). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46, 502–505.[CrossRef] [Google Scholar]
  17. Yoon, J.-H., Lee, S. T. & Park, Y.-H.(1998). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rRNA gene sequences. Int J Syst Bacteriol 48, 187–194.[CrossRef] [Google Scholar]
  18. Yoon, J.-H., Kim, H., Kim, I.-G., Kang, K. H. & Park, Y.-H.(2003).Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53, 1169–1174.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 1, pp. 173 - 177

Biolog assimilation data for strain KSL-125 and the type strains of the two species. [PDF](22 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error