1887

Abstract

A novel Gram-negative, motile, nonsporulating, rod-shaped bacterium isolated from alkaline sludge-like wastes (‘alpeorujo’ or ‘alperujo’) of two-phase olive oil extraction is described. The strain, designated AW-7, is an obligate aerobe that is halotolerant (tolerating up to 15 % w/v NaCl), sugar-tolerant (tolerating up to 45 % and 60 % w/v (+)--glucose and maltose respectively; these are the highest concentrations tolerated by any known members of the domain) and alkalitolerant (growing at a broad pH range of 5–11). Strain AW-7 is chemo-organotrophic. Ubiquinone-9 was detected in the respiratory chain of strain AW-7. The major fatty acids present are C 7, C, C cyclo 8, C 3-OH and C 7/iso-C 2-OH. Based on 16S rRNA gene sequence analysis, strain AW-7 showed almost equal phylogenetic distances from (95.6 % similarity) and (95.4 % similarity). In addition, low DNA–DNA relatedness values were found for strain AW-7 against CECT 4437 (22.5–25.4 %) and DSM 10491 (11.9–14.4 %). The DNA G+C content of strain AW-7 is 64.4 mol%. Physiological and chemotaxonomic data further confirmed the differentiation of strain AW-7 from the genera and . Thus, strain AW-7 represents a novel bacterial genus within the family , for which the name gen. nov. is proposed. sp. nov. (type strain AW-7=DSM 17697=CECT 7134) is proposed as the type species of the genus gen. nov. A reassignment of the descriptive 16S rRNA signature characteristics of the family permitted the placement of the novel genus into the family; in contrast, the genus possessed only 12 out of the 18 signature characteristics proposed, and hence it was excluded from the family .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65078-0
2007-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/1975.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65078-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Garcia, M. T., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2001; ). Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51, 1443–1448.
    [Google Scholar]
  2. Arahal, D. R., Castillo, A. M., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002a; ). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Microbiol 25, 207–211.[CrossRef]
    [Google Scholar]
  3. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002b; ). Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52, 241–249.
    [Google Scholar]
  4. Barrow, G. I. & Feltham, R. K. A. ( 1993; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  5. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  6. Cavalli-Sforza, L. L. & Edwards, A. W. F. ( 1967; ). Phylogenetic analysis models and estimation procedures. Am J Hum Genet 19, 233–257.
    [Google Scholar]
  7. Chaturvedi, P. & Shivaji, S. ( 2006; ). Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 56, 2765–2770.[CrossRef]
    [Google Scholar]
  8. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  9. Dobson, S. J. & Franzmann, P. D. ( 1996; ). Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46, 550–558.[CrossRef]
    [Google Scholar]
  10. Dobson, S. J., McMeekin, T. A. & Franzmann, P. D. ( 1993; ). Phylogenetic relationships between some members of the genera Deleya, Halomonas, and Halovibrio. Int J Syst Bacteriol 43, 665–673.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 2004; ). phylip (phylogeny inference package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  12. Franzmann, P. D., Wehmeyer, U. & Stackebrandt, E. ( 1988; ). Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11, 16–19.[CrossRef]
    [Google Scholar]
  13. Garriga, M., Ehrmann, M. A., Arnau, J., Hugas, M. & Vogel, R. F. ( 1998; ). Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48, 677–686.[CrossRef]
    [Google Scholar]
  14. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  15. Jojima, Y., Mihara, Y., Suzuki, S., Yokozeki, K., Yamanaka, S. & Fudou, R. ( 2004; ). Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54, 2263–2267.[CrossRef]
    [Google Scholar]
  16. Jones, C. E., Murphy, P. J. & Russell, N. J. ( 2000; ). Diversity and osmoregulatory responses of bacteria isolated from two-phase olive oil extraction waste products. World J Microbiol Biotechnol 16, 555–561.[CrossRef]
    [Google Scholar]
  17. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  18. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  19. Kersters, K. ( 1992; ). The genus Deleya. In The Prokaryotes, 2nd edn, pp. 3189–3197. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer-Verlag.
  20. Kluge, A. G. & Farris, J. S. ( 1969; ). Quantitative phyletics and the evolution of the anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  21. Kroppenstedt, R. M. ( 1985; ). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series no. 20), pp. 173–199. Edited by M. Goodfellow & D. E. Minnikin. New York: Academic Press.
  22. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  23. Martinez-Canovas, M. J., Quesada, E., Llamas, I. & Bejar, V. ( 2004; ). Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54, 733–737.[CrossRef]
    [Google Scholar]
  24. Mata, J. A., Martinez-Canovas, J., Quesada, E. & Bejar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  25. Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M. & Turner, D. H. ( 2004; ). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101, 7287–7292.[CrossRef]
    [Google Scholar]
  26. Mellado, E., Moore, E. R. B., Nieto, J. J. & Ventosa, A. ( 1995; ). Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45, 712–716.[CrossRef]
    [Google Scholar]
  27. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  28. Miller, L. T. ( 1982; ). A single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  29. Mutnuri, S., Vasudevan, N., Kastner, M. & Heipieper, H. J. ( 2005; ). Changes in fatty acid composition of Chromohalobacter israelensis with varying salt concentrations. Curr Microbiol 50, 151–154.[CrossRef]
    [Google Scholar]
  30. Ntougias, S. & Russell, N. J. ( 2000; ). Bacillus sp. WW3–SN6, a novel facultatively alkaliphilic bacterium isolated from the washwaters of edible olives. Extremophiles 4, 201–208.[CrossRef]
    [Google Scholar]
  31. Ntougias, S. & Russell, N. J. ( 2001; ). Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int J Syst Evol Microbiol 51, 1161–1170.[CrossRef]
    [Google Scholar]
  32. Ntougias, S., Zervakis, G. I., Ehaliotis, C., Kavroulakis, N. & Papadopoulou, K. K. ( 2006; ). Ecophysiology and molecular phylogeny of bacteria isolated from alkaline two-phase olive mill wastes. Res Microbiol 157, 376–385.[CrossRef]
    [Google Scholar]
  33. Ntougias, S., Fasseas, C. & Zervakis, G. I. ( 2007; ). Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete. Int J Syst Evol Microbiol 57, 398–404.[CrossRef]
    [Google Scholar]
  34. Okamoto, T., Taguchi, H., Nakamura, K., Ikenaga, H., Kuraishi, H. & Yamasato, K. ( 1993; ). Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160, 333–337.
    [Google Scholar]
  35. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  36. Powers, E. M. ( 1995; ). Efficacy of the RYU nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61, 3756–3758.
    [Google Scholar]
  37. Quillaguaman, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M. T. & Delgado, O. ( 2004; ). Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54, 721–725.[CrossRef]
    [Google Scholar]
  38. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  39. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  40. Sorokin, D. Yu. & Tindall, B. J. ( 2006; ). The status of the genus name Halovibrio Fendrich 1989 and the identity of the strains Pseudomonas halophila DSM 3050 and Halomonas variabilis DSM 3051. Request for an opinion. Int J Syst Evol Microbiol 56, 487–489.[CrossRef]
    [Google Scholar]
  41. Sorokin, D. Yu., Tourova, T. P., Galinski, E. A., Belloch, C. & Tindall, B. J. ( 2006; ). Extremely halophilic denitrifying bacteria from hypersaline inland lakes, Halovibrio denitrificans sp. nov. and Halospina denitrificans gen. nov., sp. nov., and evidence that the genus name Halovibrio Fendrich 1989 with the type species Halovibrio variabilis should be associated with DSM 3050. Int J Syst Evol Microbiol 56, 379–388.[CrossRef]
    [Google Scholar]
  42. Swings, J. & De Ley, J. ( 1983; ). Genus Zymomonas Kluyver and van Niel 1936. In Bergey's Manual of Systematic Bacteriology, vol 2, pp. 576–580. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  43. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  44. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  45. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  46. Van de Peer, Y. & de Wachter, R. ( 1993; ). treecon: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci 9, 177–182.
    [Google Scholar]
  47. Vargas, C., Kallimanis, A., Koukkou, A. I., Calderon, M. I., Canovas, D., Iglesias-Guerra, F., Drainas, C., Ventosa, A. & Nieto, J. J. ( 2005; ). Contribution of chemical changes in membrane lipids to the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. Syst Appl Microbiol 28, 571–581.[CrossRef]
    [Google Scholar]
  48. Ventosa, A., Gutierrez, M. C., Garcia, M. T. & Ruiz-Berraquero, F. ( 1989; ). Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol 39, 382–386.[CrossRef]
    [Google Scholar]
  49. Ventosa, A., Nieto, J. J. & Oren, A. ( 1998; ). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62, 504–544.
    [Google Scholar]
  50. Vreeland, R. H., Litchfield, C. D., Martin, E. L. & Elliot, E. ( 1980; ). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 485–495.[CrossRef]
    [Google Scholar]
  51. Wilson, K. ( 1992; ). Preparation of genomic DNA from bacteria. In Short Protocols in Molecular Biology, pp. 2-10–2-11. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: John Wiley & Sons.
  52. Yumoto, I., Hirota, K., Iwata, H., Akutsu, M., Kusumoto, K., Morita, N., Ezura, Y., Okuyama, H. & Matsuyama, H. ( 2004; ). Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2. Arch Microbiol 181, 345–351.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65078-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65078-0
Loading

Data & Media loading...

Supplements

Morphology of cells of strain AW-7 as examined by negative-staining electron microscopy. [ PDF] (327 KB)

PDF

Phylogenetic position of strain AW-7 calculated by the maximum-parsimony and maximum-likelihood methods. [ PDF] (64 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error