1887

Abstract

A yellow-pigmented, Gram-positive, aerobic, non-motile, non-spore-forming, irregular rod-shaped bacterium (strain TAN 31504) was isolated from the bacteriophagous nematode . Based on 16S rRNA gene sequence similarity, DNA G+C content of 69.5 mol%, 2,4-diaminobutyric acid in the cell-wall peptidoglycan, major menaquinone MK-11, abundance of anteiso- and iso-fatty acids, polar lipids diphosphatidylglycerol and phosphatidylglycerol and a number of shared biochemical characteristics, strain TAN 31504 was placed in the genus . DNA–DNA hybridization comparisons demonstrated a 91 % DNA–DNA relatedness between strain TAN 31504 and LMG 22506 indicating that these two strains belong to the same species, when the recommended threshold value of 70 % DNA–DNA relatedness for the definition of a bacterial species by the ad hoc committee on reconciliation of approaches to bacterial systematics is considered. Based on distinct differences in morphology, physiology, chemotaxonomic markers and various biochemical characteristics, it is proposed to split the species into two novel subspecies, subsp. subsp. nov. (type strain L-1=CIP 108389=LMG 22506) and subsp. subsp. nov. (type strain TAN 31504=DSM 18340=ATCC BAA-1336).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64822-0
2007-12-01
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/12/2770.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64822-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D., Seidman J. G., Smith J. A., Struhl K. 1989 Current Protocols in Molecular Biology New York: John Wiley and Sons, Inc;
    [Google Scholar]
  2. Behrendt U., Ulrich A., Schumann P., Naumann D., Suzuki K. 2002; Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp.nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov.,sp. nov. Int J Syst Evol Microbiol 52:1441–1454 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 2006 phylip (phylogeny inference package), version 3.66. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (editors) 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Greenberg A. E., Trussell R. R., Clesceri L. S. 1998 Standard Methods for the Examination of Water and Wastewater Washington, DC: American Public Health Association;
    [Google Scholar]
  8. Hensel R. 1984; Three murein types in coryneform bacteria isolated from activated sludge. Syst Appl Microbiol 5:11–19 [CrossRef]
    [Google Scholar]
  9. Huß V. A. R., Festl K. H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Rainey F. A., Andersson M. A., Nurmiaho Lassila E.-L., Ulrych U., Busse H.-J., Weiss N., Mikkola R., Salkinoja-Salonen M. 2000; Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae . Int J Syst Evol Microbiol 50:355–363 [CrossRef]
    [Google Scholar]
  11. Lee P. C., Schmidt-Dannert C. 2002; Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11 [CrossRef]
    [Google Scholar]
  12. Lin Y.-C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A. 2004; Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54:1669–1676 [CrossRef]
    [Google Scholar]
  13. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160
    [Google Scholar]
  14. Männistö M. K., Schumann P., Rainey F. A., Kämpfer P., Tsitko I., Tiirola M. A., Salkinoja-Salonen M. S. 2000; Subtercola boreus gen. nov., sp. nov. and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. Int J Syst Evol Microbiol 50:1731–1739
    [Google Scholar]
  15. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479:297–306 [CrossRef]
    [Google Scholar]
  16. Miller J. H. 1972; Assay of β -galactosidase. In Experiments in Molecular Genetics . pp 352–355 Edited by Miller J. H. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  17. Morais P. V., Francisco R., Branco R., Chung A. P., da Costa M. S. 2004; Leucobacter chromiireducens sp. nov., and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 27:646–652 [CrossRef]
    [Google Scholar]
  18. Morais P. V., Francisco R., Branco R., Chung A. P., da Costa M. S. 2005; Leucobacter chromiireducens sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM , List no. 102. Int J Syst Evol Microbiol 55:547–549 [CrossRef]
    [Google Scholar]
  19. Morais P. V., Paulo C., Francisco R., Branco R., Chung A. P., da Costa M. S. 2006; Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 29:414–421 [CrossRef]
    [Google Scholar]
  20. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behavior of the isomers of α ,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  23. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  24. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  25. Takagi M., Kuzuyama T., Takahashi S., Seto H. 2000; A gene cluster for the mevalonate pathway from Streptomyces sp. strain CL190. J Bacteriol 182:4153–4157 [CrossRef]
    [Google Scholar]
  26. Takeuchi M., Weiss N., Schumann P., Yokota A. 1996; Leucobacter komagatae gen. nov., sp. nov., a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46967–971 [CrossRef]
  27. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  29. Tindall B. J. 1989; Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum . FEMS Microbiol Lett 60:251–254 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  31. Trutko S. M., Dorofeeva L. V., Evtushenko L. I., Ostrovskii D. N., Hintz M., Wiesner J., Jomaa H., Baskunov B. P., Akimenko V. K. 2005; Isoprenoid pigments in representatives of the family Microbacteriaceae . Microbiology English translation of Mikrobiologiia 74:284–289 [CrossRef]
    [Google Scholar]
  32. Vandamme P., Vancanneyt M., Pot B., Mels L., Hoste B., Dewettinck D., Vlaes L., Van den Borre C., Higgins R. other authors 1992; Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int J Syst Bacteriol 42:344–356 [CrossRef]
    [Google Scholar]
  33. Visuvanathan S., Moss M. T., Standord J. L., Hermon-Taylor J., McFadden J. J. 1989; Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10:59–64 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  35. Wilbur W. J., Lipman D. J. 1983; Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci U S A 80:726–730 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.64822-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64822-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error