1887

Abstract

The group encompasses the taxa subsp. , , , , , , subsp. , , , and . In this study, the taxonomic relatedness between the species , and was investigated. Sequence analysis of the 16S rRNA gene and the gene for DNA gyrase subunit B () confirmed the very high similarities between these three type strains and a reference strain of (>99 and >97 %, respectively). DNA–DNA hybridization experiments revealed high relatedness values between the type strains of , and and between these strains and a reference strain of (83–98 %). Based on these molecular taxonomic data and the lack of phenotypic distinctive characteristics, and should be reclassified as later heterotypic synonyms of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64808-0
2007-07-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1663.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64808-0&mimeType=html&fmt=ahah

References

  1. Chern L. L., Stackebrandt E., Lee S. F., Lee F. L., Chen J. K., Fu H. M. 2004; Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 54:1387–1391 [CrossRef]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 2002 phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  6. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  7. Matarante A., Baruzzi F., Cocconcelli P. S., Morea M. 2004; Genotyping and toxigenic potential of Bacillus subtilis and Bacillus pumilus strains occurring in industrial and artisanal cured sausages. Appl Environ Microbiol 70:5168–5176 [CrossRef]
    [Google Scholar]
  8. Nakamura L. K. 1989; Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int J Syst Bacteriol 39:295–300 [CrossRef]
    [Google Scholar]
  9. Nakamura L. K., Roberts M. S., Cohan F. M. 1999 Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp.subtilis subsp. nov. and Bacillussubtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol 491211–1215 [CrossRef]
  10. Naser S. M., Hagen K. E., Vancanneyt M., Cleenwerck I., Swings J., Tompkins T. A. 2006; Lactobacillus suntoryeus Cachat and Priest 2005 is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919) Bergey et al. 1925 (Approved Lists 1980). Int J Syst Evol Microbiol 56:355–360 [CrossRef]
    [Google Scholar]
  11. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  12. Palmisano M. M., Nakamura L. K., Duncan K. E., Istock C. A., Cohan F. M. 2001; Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis , isolated from soil in the Sonoran Desert, Arizona. Int J Syst Evol Microbiol 51:1671–1679 [CrossRef]
    [Google Scholar]
  13. Priest F. G., Goodfellow M., Shute L. A., Berkeley R. C. W. 1987; Bacillus amyloliquefaciens sp. nov., nom. rev.. Int J Syst Bacteriol 3769–71 [CrossRef]
    [Google Scholar]
  14. Roberts M. S., Nakamura L. K., Cohan F. M. 1994; Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol 44:256–264 [CrossRef]
    [Google Scholar]
  15. Roberts M. S., Nakamura L. K., Cohan F. M. 1996; Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis , isolated from soil in Death Valley, California. Int J Syst Bacteriol 46:470–475 [CrossRef]
    [Google Scholar]
  16. Ruiz-García C., Bejar V., Martinez-Checa F., Llamas I., Quesada E. 2005a; Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. Int J Syst Evol Microbiol 55:191–195 [CrossRef]
    [Google Scholar]
  17. Ruiz-García C., Quesada E., Martinez-Checa F., Llamas I., Urdaci M. C., Bejar V. 2005b; Bacillus axarquiensis sp. nov. and Bacillus malacitensis sp. nov., isolated from river-mouth sediments in southern Spain. Int J Syst Evol Microbiol 55:1279–1285 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Skerman V. B. D., McGowan V., Sneath P. H. A. (editors) 1980; Approved lists of bacterial names. Int J Syst Bacteriol 30225–420 [CrossRef]
    [Google Scholar]
  20. Smith N. R., Gibson T., Gordon R. E., Sneath P. H. A. 1964; Type cultures and proposed neotype cultures of some species in the genus Bacillus . J Gen Microbiol 34:269–272 [CrossRef]
    [Google Scholar]
  21. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  24. Tynkkynen S., Satokari R., Saarela M., Mattila-Sandholm T., Saxelin M. 1999; Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl Environ Microbiol 65:3908–3914
    [Google Scholar]
  25. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  26. Zeigler D. R. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64808-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64808-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error