1887

Abstract

A Gram-negative, non-pigmented, ovoid-shaped, strictly aerobic, catalase- and oxidase-positive and highly halotolerant bacterial strain that was devoid of swimming and gliding motility, designated UST050418-052, was isolated from the surface of the marine sponge at Friday Harbor, WA, USA. Strain UST050418-052 required NaCl for growth and could tolerate salt concentrations of up to 18 %. The primary respiratory quinone was ubiquinone-10 and the DNA G+C content was 57.8 mol%. The predominant fatty acids were the saturated fatty acids 16 : 0 and 18 : 0 and the monounsaturated fatty acids 18 : 17 and 18 : 19, altogether representing 82.9 % of the total. Phylogenetic analysis based on the 16S rRNA gene sequence placed UST050418-052 in a distinct lineage within the clade in the family , with 95.0–95.8 % sequence similarity to members of the nearest genus . The DNA–DNA relatedness between UST050418-052 and IAM 12617 was 9 %. Strain UST050418-052 could be differentiated from closely related members of the clade by a number of chemotaxonomic and phenotypic characteristics such as its distinct fatty acid profile, ability to reduce nitrate to nitrite and inability to utilize citrate, succinate, -arginine and pyruvate. Based on the phylogenetic, chemotaxonomic and phenotypic evidence presented in this study, we suggest that strain UST050418-052 represents a novel genus in the family . The name gen. nov., sp. nov., is thus proposed. The type strain of is UST050418-052 (=JCM 13833 =NRRL B-41465).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64801-0
2007-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/8/1919.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64801-0&mimeType=html&fmt=ahah

References

  1. Acar, J. F. ( 1980; ). The disc susceptibility test. In Antibiotics in Laboratory and Medicine, pp. 24–54. Edited by V. Lorian. Baltimore: Williams & Wilkins.
  2. Allgaier, M., Uphoff, H., Felske, A. & Wagner-Döbler, I. ( 2003; ). Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69, 5051–5059.[CrossRef]
    [Google Scholar]
  3. Arahal, D. R., Macián, E. G. & Pujalte, M. J. ( 2005; ). Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol 55, 2371–2376.[CrossRef]
    [Google Scholar]
  4. Baumann, P. & Baumann, L. ( 1981; ). The marine gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes. In The Prokaryotes, vol. 1, pp. 1302–1331. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. Schlegel. Berlin: Springer.
  5. Bowman, J. P. ( 2000; ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50, 1861–1868.
    [Google Scholar]
  6. Buchan, A., González, J. M. & Moran, M. A. ( 2005; ). Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71, 5665–5677.[CrossRef]
    [Google Scholar]
  7. Cho, J. C. & Giovannoni, S. J. ( 2004; ). Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-β-hydroxybutyrate-producing marine bacteria in the order ‘Rhodobacterales’. Int J Syst Evol Microbiol 54, 1129–1136.[CrossRef]
    [Google Scholar]
  8. Collins, M. D. ( 1994; ). Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics, pp. 265–310. Edited by M. Goodfellow & A. G. O'Donnell. Chichester: Wiley.
  9. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  11. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  12. Giovannoni, S. J. & Rappé, M. ( 2000; ). Evolution, diversity, and molecular ecology of marine prokaryotes. In Microbial Ecology of the Oceans, pp. 47–84. Edited by D. L. Kirchman. New York: Wiley.
  13. Isnansetyo, A. & Kamei, Y. ( 2003; ). Pseudoalteromonas phenolica sp. nov., a novel marine bacterium that produces phenolic anti-methicillin-resistant Staphylococcus aureus substances. Int J Syst Evol Microbiol 53, 583–588.[CrossRef]
    [Google Scholar]
  14. Lau, S. C. K., Tsoi, M. M. Y., Li, X., Plakhotnikova, I., Wu, M., Wong, P. K. & Qian, P. Y. ( 2004; ). Loktanella hongkongensis sp. nov., a new member of the α-Proteobacteria originating from marine biofilms in Hong Kong waters. Int J Syst Evol Microbiol 54, 2281–2284.[CrossRef]
    [Google Scholar]
  15. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  16. MacDonell, M. T., Singleton, F. L. & Hood, M. A. ( 1982; ). Diluent composition for use of API 20E in characterizing marine and estuarine bacteria. Appl Environ Microbiol 44, 423–427.
    [Google Scholar]
  17. Martens, T., Heidorn, T., Pukall, R., Simon, M., Tindall, B. J. & Brinkhoff, T. ( 2006; ).Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 56, 1293–1304.[CrossRef]
    [Google Scholar]
  18. Martínez-Cánovas, M. J., Quesada, E., Martínez-Checa, F., del Moral, A. & Béjar, V. ( 2004; ). Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the α-Proteobacteria. Int J Syst Evol Microbiol 54, 1735–1740.[CrossRef]
    [Google Scholar]
  19. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  20. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athayle, M., Schaal, A. & Parlett, J. H. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef]
    [Google Scholar]
  21. Nedashkovskaya, O. I., Kim, S. B., Hans, S. K., Lysenko, A. M., Rohde, M., Zhukova, N. V., Falsen, E., Frolova, G. M., Mikhailov, V. V. & Bae, K. S. ( 2003; ). Mesonia algae gen. nov., sp. nov., a novel marine bacterium from the green alga Acrosiphonia sonderi (Kütz) Konm. Int J Syst Evol Microbiol 53, 1967–1971.[CrossRef]
    [Google Scholar]
  22. Neu, B., Voigt, A., Mitlohner, R., Leporatti, S., Gao, C. Y., Donath, E., Kiesewetter, H., Möhwald, H., Meiselman, H. J. & Bäumler, H. ( 2001; ). Biological cells as templates for hollow microcapules. J Microencapsul 18, 385–395.[CrossRef]
    [Google Scholar]
  23. Norris, J. R., Ribbons, D. W. & Varma, A. K. (editors) ( 1985; ). Methods in Microbiology, vol. 18. London: Academic Press.
  24. Ruiz-Ponte, C., Cilia, V., Lambert, C. & Nicolas, J. L. ( 1998; ). Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. Int J Syst Bacteriol 48, 537–542.[CrossRef]
    [Google Scholar]
  25. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  26. Schaefer, J. K., Goodwin, K. D., McDonald, I. R., Murrell, J. C. & Oremland, R. S. ( 2002; ). Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 52, 851–859.[CrossRef]
    [Google Scholar]
  27. Shiba, T. ( 1991; ). Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14, 140–145.[CrossRef]
    [Google Scholar]
  28. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characteristics. In Methods for General and Molecular Biology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  29. Uchino, Y., Hirata, A., Yokota, A. & Sugiyama, J. ( 1998; ). Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44, 201–210.[CrossRef]
    [Google Scholar]
  30. Van Trappen, S., Mergaert, J. & Swings, J. ( 2004; ). Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov., new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54, 1263–1269.[CrossRef]
    [Google Scholar]
  31. Wagner-Döbler, I., Rheims, H., Felske, A., El-Ghezal, A., Flade-Schröder, D., Laatsch, H., Lang, S., Pukall, R. & Tindall, B. J. ( 2004; ). Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54, 1177–1184.[CrossRef]
    [Google Scholar]
  32. Yi, H. & Chun, J. ( 2006; ). Thalassobius aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 44, 171–176.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64801-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64801-0
Loading

Data & Media loading...

Supplements

Scanning electron micrographs of cells of strain UST050418-052 . Cells were grown on marine broth for 48 h at 28 °C. Bars, 1 µm.

IMAGE

Scanning electron micrographs of cells of strain UST050418-052 . Cells were grown on marine broth for 48 h at 28 °C. Bars, 1 µm.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error