1887

Abstract

A total of 34 strains were isolated from saline water in Anmyeondo, Korea. Ten of these strains, considered to belong to novel species, were subjected to a polyphasic taxonomic investigation. The strains were Gram-negative, moderately halophilic, motile and non-spore-forming rods that contained Q-9 as the predominant ubiquinone and C 7, C and either summed feature 4 (C 7/C iso 2-OH) or C cyclo 8 as the major fatty acids. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that the ten isolates formed four separate lineages in the genus . Combined phenotypic data and DNA–DNA hybridization data supported the conclusion that they represent four novel species in the genus , for which the names sp. nov. (type strain M12=KCTC 12662=DSM 18042), sp. nov. (type strain M24=KCTC 12663=DSM 18043), sp. nov. (type strain M27=KCTC 12664=DSM 18044) and sp. nov. (type strain M29=KCTC 12665=DSM 18045) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64767-0
2007-04-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/675.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64767-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., García M. T., Ludwig W., Schleifer K. H., Ventosa A. 2001; Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51:1443–1448
    [Google Scholar]
  2. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A. 2002a; Proposal of Cobetia marina gen. nov., comb. nov. within the family Halomonadaceae , to include the species Halomonas marina . Syst Appl Microbiol 25:207–211 [CrossRef]
    [Google Scholar]
  3. Arahal D. R., Ludwig W., Schleifer K. H., Ventosa A. 2002b; Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249
    [Google Scholar]
  4. Bouchotroch S., Quesada E., del Moral A., Llamas I., Béjar V. 2001; Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [CrossRef]
    [Google Scholar]
  5. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas , and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [CrossRef]
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kaye J. Z., Márquez M. C., Ventosa A., Baross J. A. 2004; Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54:499–511 [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  15. Klatte S., Rainey F. A., Kroppenstedt R. M. 1994; Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Int J Syst Bacteriol 44:769–773 [CrossRef]
    [Google Scholar]
  16. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  17. Lee J.-C., Jeon C. O., Lim J.-M., Lee S.-M., Lee J.-M., Song S.-M., Park D.-J., Li W.-J., Kim C.-J. 2005; Halomonas taeanensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 55:2027–2032 [CrossRef]
    [Google Scholar]
  18. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V. 2004a; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737 [CrossRef]
    [Google Scholar]
  19. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Quesada E. 2004b; Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Málaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332 [CrossRef]
    [Google Scholar]
  20. Martínez-Checa F., Béjar V., Martínez-Cánovas M. J., Llamas I., Quesada E. 2005; Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 55:2007–2011 [CrossRef]
    [Google Scholar]
  21. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui , Volcaniella eurihalina , and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45:712–716 [CrossRef]
    [Google Scholar]
  22. Peçonek J., Gruber C., Gallego V., Ventosa A., Busse H.-J., Kämpfer P., Radax C., Stan-Lotter H. 2006; Reclassification of Pseudomonas beijerinckii Hof 1935 as Chromohalobacter beijerinckii comb. nov., and emended description of the species. Int J Syst Evol Microbiol 56:1953–1957 [CrossRef]
    [Google Scholar]
  23. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a district actinomycete lineage; proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  24. Romano I., Giordano A., Lama L., Nicolaus B., Gambacorta A. 2005; Halomonas campaniensis sp. nov., a haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy. Syst Appl Microbiol 28:610–618 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method; a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  27. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phased high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  28. Tarrand J. J., Groschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccarovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64767-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64767-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error