1887

Abstract

Two anaerobic thermophilic bacteria, designated strains JW/SL824 and JW/SL-NZ826, were isolated from an acidic volcanic steam outlet on White Island, New Zealand. Cells were rod-shaped, spore-forming, motile and Gram-stain negative, but contained Gram-type positive cell wall. Strain JW/SL-NZ826 utilized various carbohydrates including xylose and glucose. The fermentation end products produced from glucose in the absence of thiosulfate were lactate, ethanol, acetate, CO and H. The temperature range for growth was 34–72 °C, with an optimum at 63–67 °C. The pH range for growth was 4.0–8.0, with an optimum at 5.0–6.5. The doubling time of strain JW/SL-NZ826 under optimal growth conditions was 2.4 h. The DNA G+C content was 34–35 mol% (HPLC). The two strains reduced up to 1 M thiosulfate to elemental sulfur without sulfide formation, which is a trend typically observed among species belonging to the genus . Sulfur globules containing short and long sulfur chains but no S-ring sulfur were produced inside and outside the cells. Up to 90 mM sulfite was tolerated. This tolerance is assumed to be an adaptation to the geochemistry of the environment of White Island. The 16S rRNA gene sequence analysis, however, indicated that the two strains belonged to the genus , with similarities in the range 95.6–92.7 %. Therefore, strains JW/SL-NZ824 and JW/SL-NZ826 represent a novel taxon, for which the name sp. nov. is proposed, with strain JW/SL-NZ826 (=ATCC 700320=DSM 17917) as the type strain. Based on this and previous studies, an emended description of the genus is given.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64748-0
2007-07-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1429.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64748-0&mimeType=html&fmt=ahah

References

  1. Barrett, E. L. & Clark, M. A. ( 1987; ). Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 51, 192–205.
    [Google Scholar]
  2. Beuscher, N., Mayer, F. & Gottschalk, G. ( 1974; ). Citrate lyase from Rhodopseudomonas gelatinosa: purification, electron microscopy and subunit structure. Arch Microbiol 100, 307–328.[CrossRef]
    [Google Scholar]
  3. Cann, I. K. O., Stroot, P. G., Mackie, K. R., White, B. A. & Mackie, R. I. ( 2001; ). Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol 51, 293–302.
    [Google Scholar]
  4. Dahl, C. & Prange, A. ( 2006; ). Bacterial sulfur globules: occurrence, structure and metabolism. In Bacterial Inclusions (Series Microbiology Monographs), chapter 2., pp. 21–51. Edited by J. M. Shively. New York: Springer.
  5. Donachie, S. P., Christenson, B. W., Kunkel, D. D., Malahoff, A. & Alam, M. ( 2002; ). Microbial community in acidic hydrothermal waters of volcanically active White Island, New Zealand. Extremophiles 6, 419–425.[CrossRef]
    [Google Scholar]
  6. Fardeau, M.-L., Bonilla Salinas, M., L'Haridon, S., Jeanthon, C., Verhé, F., Cayol, J.-L., Patel, B. K. C., Garcia, J.-L. & Ollivier, B. ( 2004; ). Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54, 467–474.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 2001; ). phylip (phylogeny inference package) version 3.6a2.1. Department of Genome Sciences, University of Washington, Seattle, USA.
  8. Fitch, W. M. & Margoliash, E. ( 1967; ). Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155, 279–284.[CrossRef]
    [Google Scholar]
  9. Freier, D., Mothershed, C. P. & Wiegel, J. ( 1988; ). Characterization of Clostridium thermocellum JW-20. Appl Environ Microbiol 54, 204–211.
    [Google Scholar]
  10. Giggenbach, W. F. ( 1987; ). Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2, 143–161.[CrossRef]
    [Google Scholar]
  11. Hedenquist, J. W., Simmons, S. F., Giggenbach, W. F. & Eldridge, C. S. ( 1993; ). White Island, New Zealand, volcanic-hydrothermal system represents the geochemical environment of high-sulfidation Cu and Au ore deposition. Geology 21, 731–734.[CrossRef]
    [Google Scholar]
  12. Jorgensen, B. B. ( 1990; ). A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249, 152–154.[CrossRef]
    [Google Scholar]
  13. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  14. Kozianowski, G., Canganella, F., Rainey, F. A., Hippe, H. & Antranikian, G. ( 1997; ). Purification and characterization of thermostable pectate-lyases from a newly isolated thermophilic bacterium, Thermoanaerobacter italicus sp. nov. Extremophiles 1, 171–182.[CrossRef]
    [Google Scholar]
  15. Lee, Y.-E., Jain, M. K., Lee, C., Lowe, S. E. & Zeikus, J. G. ( 1993; ). Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurogenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43, 41–51.[CrossRef]
    [Google Scholar]
  16. Liu, S.-Y. ( 1995; ). Isolation and characterization of Thermoanaerobacterium aotearoense sp. nov. and the xylose isomerase and xylanase from a novel Thermoanaerobacterium sp. Dissertation, University of Georgia.
  17. Ljungdahl, L. G. & Wiegel, J. ( 1986; ). Anaerobic fermentations. In Manual of Industrial Microbiology and Biotechnology, pp. 84–96. Edited by A. L. Demain & N. A. Solomon. Washington, DC: American Society for Microbiology.
  18. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  19. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  20. Peteranderl, R., Shotts, E. B., Jr & Wiegel, J. ( 1990; ). Stability of antibiotics at growth conditions of thermophilic anaerobes. Appl Environ Microbiol 56, 1981–1983.
    [Google Scholar]
  21. Prange, A., Arzberger, I., Engemann, C., Modrow, H., Schumann, O., Trüper, H. G., Steudel, R., Dahl, C. & Hormes, J. ( 1999; ). In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy. Biochim Biophys Acta 1428, 446–454.[CrossRef]
    [Google Scholar]
  22. Prange, A., Chauvistré, R., Modrow, H., Hormes, J., Trüper, H. G. & Dahl, C. ( 2002; ). Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiology 148, 267–276.
    [Google Scholar]
  23. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. ( 1996; ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef]
    [Google Scholar]
  24. Ravot, G., Ollivier, B., Magot, M., Patel, B. K. C., Crolet, J.-L., Fardeau, M.-L. & Garcia, J.-L. ( 1995; ). Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl Environ Microbiol 61, 2053–2055.
    [Google Scholar]
  25. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  26. Schink, B. & Zeikus, J. G. ( 1983; ). Clostridium thermohydrosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulfate. J Gen Microbiol 129, 1149–1158.
    [Google Scholar]
  27. Valentine, R. C., Shapiro, B. M. & Stadtman, E. R. ( 1968; ). Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from E. coli. Biochemistry 7, 2143–2152.[CrossRef]
    [Google Scholar]
  28. Whitman, W. B., Sohn, S., Caras, D. S. & Premachandran, U. ( 1986; ). Isolation and characterization of 22 mesophilic Methanococci. Syst Appl Microbiol 7, 235–240.[CrossRef]
    [Google Scholar]
  29. Wiegel, J. ( 1981; ). Distinction between the Gram reaction and the Gram type of bacteria. Int J Syst Bacteriol 31, 88.[CrossRef]
    [Google Scholar]
  30. Wiegel, J. ( 1990; ). Temperature spans for growth: a hypothesis and discussion. FEMS Microbiol Rev 75, 155–170.[CrossRef]
    [Google Scholar]
  31. Wiegel, J. ( 1998; ). Lateral gene exchange, an evolutionary mechanism for extending the upper or lower temperature limits for growth of a microorganism? A hypothesis. In Thermophiles, The Molecular Key to the Evolution and the Origin of Life? pp. 175–185. Edited by J. Wiegel & M. W. W. Adams. London: Taylor and Francis.
  32. Wiegel, J. & Ljungdahl, L. G. ( 1981; ). Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128, 343–348.[CrossRef]
    [Google Scholar]
  33. Wiegel, J. & Quandt, L. ( 1982; ). Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J Gen Microbiol 128, 2261–2270.
    [Google Scholar]
  34. Wilson, K. ( 1987; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Greene Publishing and Wiley Interscience.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64748-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64748-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error