1887

Abstract

An anaerobic, mesophilic, syntrophic fatty-acid-oxidizing bacterium, designated strain OL-4, was isolated as a co-culture with DSM 1535 from an anaerobic expanded granular sludge bed reactor used to treat an oleate-based effluent. Strain OL-4 degraded oleate, a mono-unsaturated fatty acid, and straight-chain fatty acids C–C in syntrophic association with DSM 1535. Even-numbered fatty acids were degraded to acetate and methane whereas odd-numbered fatty acids were degraded to acetate, propionate and methane. Branched-chain fatty acids were not degraded. The bacterium could not grow axenically with any other substrate tested and therefore is considered to be obligately syntrophic. Fumarate, sulfate, thiosulfate, sulfur and nitrate could not serve as electron acceptors for strain OL-4 to degrade oleate or butyrate. Cells of strain OL-4 were curved rods, formed spores and showed a variable response to Gram staining. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OL-4 was most closely related to the fatty-acid-oxidizing, syntrophic bacterium sp. TB-6 (95 % similarity), subsp. DSM 2245 (94 % similarity) and DSM 16215 (93 % similarity). In addition to this moderate similarity, phenotypic and physiological characteristics, such as obligate syntrophy, spore formation and utilization of a broader substrate range, differentiated strain OL-4 from these species. Therefore strain OL-4 represents a novel species, for which the name sp. nov. is proposed. The type strain is OL-4 (=DSM 17840=JCM 13948).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64734-0
2007-03-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/3/609.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64734-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Meyers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Beaty, P. S. & McInerney, M. J. ( 1987; ). Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147, 389–393.[CrossRef]
    [Google Scholar]
  3. Jackson, B. E., Bhupathiraju, V. K., Tanner, R. S., Woese, C. R. & McInerney, M. J. ( 1999; ). Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171, 107–114.[CrossRef]
    [Google Scholar]
  4. Lalman, J. A. & Bagley, D. M. ( 2000; ). Anaerobic degradation and inhibitory effects of linoleic acid. Water Res 34, 4220–4228.[CrossRef]
    [Google Scholar]
  5. Lalman, J. A. & Bagley, D. M. ( 2001; ). Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Res 35, 2975–2983.[CrossRef]
    [Google Scholar]
  6. Lorowitz, W. H., Zhao, H. & Bryant, M. P. ( 1989; ). Syntrophomonas wolfei subsp. saponavida subsp. nov., a long chain fatty-acid degrading, anaerobic, syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species. Int J Syst Bacteriol 39, 122–126.[CrossRef]
    [Google Scholar]
  7. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  8. McInerney, M. J. ( 1992; ). The genus Syntrophomonas, and other syntrophic bacteria. In The Prokaryotes, 2nd edn, pp. 2048–2057. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. Berlin: Springer.
  9. McInerney, M. J., Bryant, M. P. & Pfennig, N. ( 1979; ). Anaerobic bacterium that degrades fatty-acids in syntrophic association with methanogens. Arch Microbiol 122, 129–135.[CrossRef]
    [Google Scholar]
  10. McInerney, M. J., Bryant, M. P., Hespell, R. B. & Costerton, J. W. ( 1981; ). Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty-acid oxidizing bacterium. Appl Environ Microbiol 41, 1029–1039.
    [Google Scholar]
  11. Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., Ludwig, W. & Backhaus, H. ( 1996; ). Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178, 5636–5643.
    [Google Scholar]
  12. Roy, F., Samain, E., Dubourguier, H. C. & Albagnac, G. ( 1986; ). Synthrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145, 142–147.[CrossRef]
    [Google Scholar]
  13. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  14. Sanguinetti, C. J., Dias Neto, E. & Simpson, A. J. ( 1994; ). Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17, 914–921.
    [Google Scholar]
  15. Schink, B. ( 1997; ). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61, 262–280.
    [Google Scholar]
  16. Stams, A. J. M., van Dijk, J. B., Dijkema, C. & Plugge, C. M. ( 1993; ). Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59, 1114–1119.
    [Google Scholar]
  17. Stieb, M. & Schink, B. ( 1985; ). Anaerobic oxidation of fatty-acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch Microbiol 140, 387–390.[CrossRef]
    [Google Scholar]
  18. Svetlitshnyi, V., Rainey, F. & Wiegel, J. ( 1996; ). Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46, 1131–1137.[CrossRef]
    [Google Scholar]
  19. Weng, C. & Jeris, J. S. ( 1976; ). Biochemical mechanisms in methane fermentation of glutamic and oleic acids. Water Res 10, 9–18.[CrossRef]
    [Google Scholar]
  20. Wu, C., Liu, X. & Dong, X. ( 2006a; ). Syntrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56, 2331–2335.[CrossRef]
    [Google Scholar]
  21. Wu, C., Liu, X. & Dong, X. ( 2006b; ). Syntrophomonas erecta subsp. sporosyntropha subsp. nov., a spore-forming bacterium that degrades short chain fatty acids in co-culture with methanogens. Syst Appl Microbiol 29, 457–462.[CrossRef]
    [Google Scholar]
  22. Zhang, C., Liu, X. & Dong, X. ( 2004; ). Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54, 969–973.[CrossRef]
    [Google Scholar]
  23. Zhang, C., Liu, X. & Dong, X. ( 2005; ). Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55, 799–803.[CrossRef]
    [Google Scholar]
  24. Zhao, H., Yang, D., Woese, C. R. & Bryant, M. P. ( 1990; ). Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40, 40–44.[CrossRef]
    [Google Scholar]
  25. Zhao, H., Yang, D., Woese, C. R. & Bryant, M. P. ( 1993; ). Assignment of fatty acid-β-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses. Int J Syst Bacteriol 43, 278–286.[CrossRef]
    [Google Scholar]
  26. Zoetendal, E. G., Akkermans, A. D. L., Akkermans van Vliet, W. M., de Visser, J. A. G. M. & de Vos, W. M. ( 2001; ). The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13, 129–134.[CrossRef]
    [Google Scholar]
  27. Zou, B. Z., Takeda, K., Tonouchi, A., Akada, S. & Fujita, T. ( 2003; ). Characteristics of an anaerobic, syntrophic, butyrate-degrading bacterium in paddy field soil. Biosci Biotechnol Biochem 67, 2059–2067.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64734-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64734-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error