1887

Abstract

Two novel species belonging to the genus are described on the basis of a polyphasic taxonomic approach. A total of 40 strains of Gram-negative, psychrotolerant, HS-producing bacteria were isolated from marine fish (cod and plaice) caught in the Baltic Sea off Denmark. Strains belonging to group 1 (seven strains) were a lactate-assimilating variant of with a G+C content of 44 mol%. The strains of group 2 (33 strains) utilized lactate, -acetylglucosamine and malate but did not produce DNase or ornithine decarboxylase. Their G+C content was 47 mol%. Phylogenetic analysis of the 16S rRNA gene sequence data placed the two novel species within the genus . Group 1 showed greatest sequence similarity with ATCC BAA-1205 (99.9 %). However, gene sequence analysis and DNA–DNA hybridization differentiated these isolates from , with 95.6 % sequence similarity and less than 57 % DNA relatedness, respectively. Group 2 strains shared more than 99 % 16S rRNA gene sequence similarity with the type strains of and , but sequence similarity (∼85 %) and the results of DNA hybridization (∼28 %) indicated that the new isolates represented a novel species. Furthermore, when compared to each other, the type strains of and had almost identical sequences and significantly high DNA reassociation values (76–83 %), indicating that they belonged to the same species. Based on the conclusions of this study, we propose the novel species sp. nov. (type strain T147=LMG 23744=NBRC 102030) for group 1 strains and sp. nov. (type strain S13=LMG 23746=NBRC 102032) for group 2 strains, and we propose that as a later heterotypic synonym of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64708-0
2007-02-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/347.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64708-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  3. Frazier, W. C. ( 1926; ). A method for the detection of changes in gelatin due to bacteria. J Infect Dis 39, 302–306.[CrossRef]
    [Google Scholar]
  4. Gram, L. & Huss, H. H. ( 1996; ). Microbiological spoilage of fish and fish products. Int J Food Microbiol 33, 121–137.[CrossRef]
    [Google Scholar]
  5. Gram, L., Trolle, G. & Huss, H. H. ( 1987; ). Detection of specific spoilage bacteria from fish stored at low (0 °C) and high (20 °C) temperatures. Int J Food Microbiol 4, 65–72.[CrossRef]
    [Google Scholar]
  6. Gregerson, T. ( 1978; ). Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5, 123–127.[CrossRef]
    [Google Scholar]
  7. Ivanova, E. P., Nedashkovskaya, O. I., Sawabe, T., Zhukova, N. V., Frolova, G. M., Nicolau, D. V., Mikhailov, V. V. & Bowman, J. P. ( 2004; ). Shewanella affinis sp. nov., isolated from marine invertebrates. Int J Syst Evol Microbiol 54, 1089–1093.[CrossRef]
    [Google Scholar]
  8. Johnson, J. L. ( 1981; ). Genetic characterization. In Manual of Methods for General Bacteriology, pp. 450–472. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  9. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  10. Okuzumi, M., Okuda, S. & Awano, M. ( 1981; ). Isolation of psychrophilic and halophilic histamine-forming bacteria from Scomber japonicus. Bull Jpn Soc Sci Fish 47, 1591–1598.[CrossRef]
    [Google Scholar]
  11. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  12. Sambrook, J., Fritsch, E. L. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  13. Satomi, M., Kimura, B., Mizoi, M., Sato, T. & Fujii, T. ( 1997; ). Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47, 832–836.[CrossRef]
    [Google Scholar]
  14. Satomi, M., Oikawa, H. & Yano, Y. ( 2003; ). Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53, 491–499.[CrossRef]
    [Google Scholar]
  15. Satomi, M., Vogel, B. F., Gram, L. & Venkateswaran, K. ( 2006; ). Shewanella hafniensis sp. nov. and Shewanella morhuae sp. nov., isolated from marine fish of the Baltic Sea. Int J Syst Evol Microbiol 56, 243–249.[CrossRef]
    [Google Scholar]
  16. Shewan, J. M., Hoggs, G. & Hodgkiss, W. ( 1960; ). A determinative scheme for the identification of certain genera of gram-negative bacteria, with special reference to the Pseudomonadaceae. J Appl Bacteriol 23, 379–390.[CrossRef]
    [Google Scholar]
  17. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  18. Stenstrom, I. M. & Molin, G. ( 1990; ). Classification of the spoilage flora of fish, with special reference to Shewanella putrefaciens. J Appl Bacteriol 68, 601–618.[CrossRef]
    [Google Scholar]
  19. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  20. Venkateswaran, K., Moser, D. P., Dollhopf, M. E., Lies, D. P., Saffarini, D. A., MacGregor, B. J., Ringelberg, D. B., White, D. C., Nishijima, M. & other authors ( 1999; ). Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49, 705–724.[CrossRef]
    [Google Scholar]
  21. Vogel, B. F., Jorgensen, K., Christensen, H., Olsen, J. E. & Gram, L. ( 1997; ). Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16S rRNA gene sequence analysis. Appl Environ Microbiol 63, 2189–2199.
    [Google Scholar]
  22. Vogel, B. F., Venkateswaran, K., Satomi, M. & Gram, L. ( 2005; ). Identification of Shewanella baltica as the most important H2S-producing species during iced storage of Danish marine fish. Appl Environ Microbiol 71, 6689–6697.[CrossRef]
    [Google Scholar]
  23. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  24. Weiner, R. M., Coyne, V. E., Brayton, P., West, P. & Raiken, S. F. ( 1988; ). Alteromonas colwelliana sp. nov., an isolate from oyster habitats. Int J Syst Bacteriol 38, 240–244.[CrossRef]
    [Google Scholar]
  25. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  26. Yamamoto, S. & Harayama, S. ( 1995; ). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109.
    [Google Scholar]
  27. Ziemke, F., Brettar, I. & Höfle, M. G. ( 1997; ). Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat Microb Ecol 13, 63–74.[CrossRef]
    [Google Scholar]
  28. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64708-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64708-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 347 - 352

Source and isolation of strains tested in this study.

DNA–DNA reassociation values of strains of the novel species with closely related shewanellae.

[PDF file of Supplementary Tables S1 and S2](19 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error