1887

Abstract

During a study of polysaccharide-hydrolysing bacteria present in different plant sources, two strains were isolated from pulverized decaying wood of and classified in the genus on basis of their almost complete 16S rRNA gene sequences. Their closest phylogenetic relatives were USDA 4128 and S02, with 98.2 and 98.1 % 16S rRNA gene sequence similarity, respectively. and sequence analysis showed that these species have less than 88 and 92 % similarity, respectively, to the novel strains. In contrast to their closest phylogenetic relatives, the two strains showed strong cellulase activity on plates containing CM-cellulose as a carbon source. They were also distinguishable from these species on the basis of other phenotypic characteristics. The strains were able to induce ineffective nodules on and the sequence of their gene was phylogenetically close to that of 1021 (99.6 % similarity). DNA–DNA hybridization values ranged from 10 to 22 % with respect to USDA 4128 and 14 to 25 % with respect to S02, showing that the strains from this study belong to a novel species, for which the name sp. nov. is proposed. The type strain is ALA10B2 (=LMG 23642=DSM 18291=CECT 7176).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64680-0
2007-04-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/844.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64680-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Chun, J. & Goodfellow, M. ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA sequences. Int J Syst Bacteriol 45, 240–245.[CrossRef]
    [Google Scholar]
  3. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  4. Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., Lloyd-Macgilp, S. A. & Young, J. P. W. ( 2001; ). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51, 2037–2048.[CrossRef]
    [Google Scholar]
  5. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  6. Kumar, S., Tamura, K., Jakobsen, I.-B. & Nei, M. ( 2001; ). mega - Molecular Evolutionary Genetics Analysis software. Tempe, AZ: Arizona State University.
  7. Lindström, K. ( 1989; ). Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39, 365–367.[CrossRef]
    [Google Scholar]
  8. Mandel, M. & Marmur, J. ( 1968; ). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206.
    [Google Scholar]
  9. Plazinski, J., Chen, Y. H. & Rolfe, B. G. ( 1985; ). General method for the identification of plasmid species in fast-growing soil microorganisms. Appl Environ Microbiol 48, 1001–1003.
    [Google Scholar]
  10. Quan, Z. X., Bae, H. S., Baek, J. H., Chen, W. F., Im, W. T. & Lee, S. T. ( 2005; ). Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55, 2543–2549.[CrossRef]
    [Google Scholar]
  11. Rivas, R., Velázquez, E., Valverde, A., Mateos, P. F. & Martínez-Molina, E. ( 2001; ). A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22, 1086–1089.[CrossRef]
    [Google Scholar]
  12. Rivas, R., Velázquez, E., Palomo, J. L., Mateos, P., García-Benavides, P. & Martínez-Molina, E. ( 2002a; ). Rapid identification of Clavibacter michiganensis subspecies sepedonicus using two primers random amplified polymorphic DNA (TP-RAPD) fingerprints. Eur J Plant Pathol 108, 179–184.[CrossRef]
    [Google Scholar]
  13. Rivas, R., Velázquez, E., Willems, A., Vizcaíno, N., Subba-Rao, N. S., Mateos, P. F., Gillis, M., Dazzo, F. B. & Martínez-Molina, E. ( 2002b; ). A new species of Devosia that forms a nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L. f.) Druce. Appl Environ Microbiol 68, 5217–5222.[CrossRef]
    [Google Scholar]
  14. Rivas, R., Sánchez, M., Trujillo, M. E., Zurdo-Piñeiro, J. L., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2003; ). Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree (Ulmus nigra). Int J Syst Evol Microbiol 53, 99–103.[CrossRef]
    [Google Scholar]
  15. Rivas, R., Trujillo, M. E., Sánchez, M., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2004a; ). Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra. Int J Syst Evol Microbiol 54, 513–517.[CrossRef]
    [Google Scholar]
  16. Rivas, R., Trujillo, M. E., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2004b; ). Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int J Syst Evol Microbiol 54, 533–536.[CrossRef]
    [Google Scholar]
  17. Rivas, R., Trujillo, M. E., Schumann, P., Kroppenstedt, R. M., Sánchez, M., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2004c; ). Xylanibacterium ulmi gen. nov., sp. nov., a novel xylanolytic member of the family Promicromonosporaceae. Int J Syst Evol Microbiol 54, 557–561.[CrossRef]
    [Google Scholar]
  18. Rivas, R., Trujillo, M. E., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2004d; ). Agromyces ulmi sp. nov., a xylanolytic bacterium isolated from Ulmus nigra in Spain. Int J Syst Evol Microbiol 54, 1987–1990.[CrossRef]
    [Google Scholar]
  19. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  20. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  21. Toro, N. & Olivares, J. ( 1986; ). Characterization of a large plasmid of Rhizobium meliloti involved in enhancing nodulation. Mol Gen Genet 202, 331–335.[CrossRef]
    [Google Scholar]
  22. Velázquez, E., Peix, A., Zurdo-Piñeiro, J. L., Palomo, J. L., Mateos, P. F., Rivas, R., Muñoz-Adelantado, E., Toro, N., García-Benavides, P. & Martínez-Molina, E. ( 2005; ). The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. Mol Plant Microbe Interact 18, 1325–1332.[CrossRef]
    [Google Scholar]
  23. Wang, E. T., van Berkum, P., Beyene, D., Sui, X. H., Dorado, O., Chen, X. H. & Martinez-Romero, E. ( 1998; ). Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48, 687–699.[CrossRef]
    [Google Scholar]
  24. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  25. Willems, A., Doignon-Bourcier, F., Goris, J., Coopman, R., de Lajudie, P. & Gillis, M. ( 2001; ). DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51, 1315–1322.
    [Google Scholar]
  26. Willems, A., Fernández-López, M., Muñoz-Adelantado, E., Goris, J., De Vos, P., Martínez-Romero, E., Toro, N. & Gillis, M. ( 2003; ). Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an Opinion. Int J Syst Evol Microbiol 53, 1207–1217.[CrossRef]
    [Google Scholar]
  27. Zurdo-Piñeiro, J. L., Velázquez, E., Lorite, M. J., Brelles-Mariño, G., Schröder, E. C., Bedmar, E. J., Mateos, P. F. & Martínez-Molina, E. ( 2004; ). Identification of fast-growing rhizobia nodulating tropical legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Syst Appl Microbiol 27, 469–477.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64680-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64680-0
Loading

Data & Media loading...

Supplements

Cellulase activity presented by strain ALA10B2 on CEA plates after 5 days incubation at 28 °C.

IMAGE

TP-RAPD profiles obtained by using primers 879F and 1522R. Lanes: 1, sp. nov. ALA10B2 ; 2, sp. nov. ALA38.2; 3, USDA 4128 ; 4, SO2 . Lane MW, standard VI of Boehringer-Roche (sizes in bp).

IMAGE

[PDF file of Supplementary Figs S3-S5](25 KB)

PDF

Nodules induced by strain ALA10B2 (a) and GR4 (b) on roots. Bars, 0.3 cm.

IMAGE

Plasmid profiles in a horizontal 0.7 % agarose gel. Lanes: 1, GR4; 2, strain ALA10B2 . Results of hybridization using a probe: lane 3, GR4; 4, strain ALA10B2 (marked by an arrow).

IMAGE

Comparative sequence analysis of gene sequences from strain ALA10B2 and representative related strains from GenBank. [PDF](15 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error