1887

Abstract

A facultatively anaerobic, selenate- and arsenate-reducing bacterium, designated strain SF-1, was isolated from a selenium-contaminated sediment obtained from an effluent drain of a glass-manufacturing plant in Japan. The bacterium stained Gram-positive and was a motile, spore-forming rod capable of respiring with selenate, arsenate and nitrate as terminal electron acceptors. The major cellular fatty acids of the strain were iso-C, iso-C 10 and C 7 alcohol. The G+C content of the genomic DNA was 42.8 mol%. Though the nearest phylogenetic neighbour was JCM 10885, with a 16S rRNA gene sequence similarity of 99.6 %, DNA–DNA hybridization studies showed only 14 % relatedness between these strains, a level that is clearly below the value recommended to delimit different species. This, together with the phenotypic differences (utilization of electron acceptors, NaCl tolerance), suggests that strain SF-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SF-1 (=JCM 14380=DSM 18680).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64667-0
2007-05-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/1060.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64667-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Brosius, J., Dull, T. J., Sleeter, D. D. & Noller, H. F. ( 1981; ). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148, 107–127.[CrossRef]
    [Google Scholar]
  3. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  4. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  5. Fujita, M., Ike, M., Nishimoto, S., Takahashi, K. & Kashiwa, M. ( 1997; ). Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. J Ferment Bioeng 83, 517–522.[CrossRef]
    [Google Scholar]
  6. Fujita, M., Ike, M., Kashiwa, M., Hashimoto, R. & Soda, S. ( 2002; ). Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp. SF-1. Biotechnol Bioeng 80, 755–761.[CrossRef]
    [Google Scholar]
  7. Imada, C., Harada, Y., Kobayashi, T., Hamada-Sato, N. & Watanabe, E. ( 2005; ). Degradation of ferric chelate of ethylenediaminetetraacetic acid by bacterium isolated from deep-sea stalked barnacle. Mar Biotechnol 7, 21–25.[CrossRef]
    [Google Scholar]
  8. Kashiwa, M., Nishimoto, S., Takahashi, K., Ike, M. & Fujita, M. ( 2000; ). Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. J Biosci Bioeng 89, 528–533.[CrossRef]
    [Google Scholar]
  9. Katayama-Fujimura, Y., Komatsu, Y., Kuraishi, H. & Kaneko, T. ( 1984; ). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48, 3169–3172.[CrossRef]
    [Google Scholar]
  10. Kawasaki, H., Hoshino, Y., Hirata, A. & Yamasato, K. ( 1993; ). Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. Arch Microbiol 160, 358–362.
    [Google Scholar]
  11. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  12. Kluge, A. G. & Farris, F. S. ( 1969; ). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Oremland, R. S. & Stolz, J. F. ( 2000; ). Dissimilatory reduction of selenate and arsenate in nature. In Environmental Microbe-Metal Interactions, pp. 199–224. Edited by D. R. Lovley. Washington, DC: American Society for Microbiology.
  15. Oremland, R. S. & Stolz, J. F. ( 2003; ). The ecology of arsenic. Science 300, 939–944.[CrossRef]
    [Google Scholar]
  16. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  17. Stolz, J. F., Basu, P. & Oremland, R. S. ( 2002; ). Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5, 201–207.[CrossRef]
    [Google Scholar]
  18. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  19. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  20. Yamamura, S., Ike, M. & Fujita, M. ( 2003; ). Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1. J Biosci Bioeng 96, 454–460.[CrossRef]
    [Google Scholar]
  21. Yamamura, S., Terashi, S., Ike, M., Yamashita, M. & Fujita, M. ( 2004; ). Characterization of arsenate-, selenate- and nitrate-reducing activities in Bacillus sp. SF-1. Jpn J Water Treat Biol 40, 161–168.[CrossRef]
    [Google Scholar]
  22. Yamamura, S., Yamamoto, N., Ike, M. & Fujita, M. ( 2005; ). Arsenic extraction from solid phase using a dissimilatory arsenate-reducing bacterium. J Biosci Bioeng 100, 219–222.[CrossRef]
    [Google Scholar]
  23. Yoon, J.-H., Kang, S.-S., Lee, K.-C., Kho, Y. H., Choi, S. H., Kang, K. H. & Park, Y.-H. ( 2001; ). Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 51, 1087–1092.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64667-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64667-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1060 - 1064

Maximum-parsimony tree derived from 16S rRNA gene sequences showing the relationships between strain SF-1 and related species. [PDF](18 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error