1887

Abstract

A facultatively anaerobic, selenate- and arsenate-reducing bacterium, designated strain SF-1, was isolated from a selenium-contaminated sediment obtained from an effluent drain of a glass-manufacturing plant in Japan. The bacterium stained Gram-positive and was a motile, spore-forming rod capable of respiring with selenate, arsenate and nitrate as terminal electron acceptors. The major cellular fatty acids of the strain were iso-C, iso-C 10 and C 7 alcohol. The G+C content of the genomic DNA was 42.8 mol%. Though the nearest phylogenetic neighbour was JCM 10885, with a 16S rRNA gene sequence similarity of 99.6 %, DNA–DNA hybridization studies showed only 14 % relatedness between these strains, a level that is clearly below the value recommended to delimit different species. This, together with the phenotypic differences (utilization of electron acceptors, NaCl tolerance), suggests that strain SF-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SF-1 (=JCM 14380=DSM 18680).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64667-0
2007-05-01
2021-02-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/1060.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64667-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127 [CrossRef]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Fujita M., Ike M., Nishimoto S., Takahashi K., Kashiwa M. 1997; Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. J Ferment Bioeng 83:517–522 [CrossRef]
    [Google Scholar]
  6. Fujita M., Ike M., Kashiwa M., Hashimoto R., Soda S. 2002; Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp. SF-1. Biotechnol Bioeng 80:755–761 [CrossRef]
    [Google Scholar]
  7. Imada C., Harada Y., Kobayashi T., Hamada-Sato N., Watanabe E. 2005; Degradation of ferric chelate of ethylenediaminetetraacetic acid by bacterium isolated from deep-sea stalked barnacle. Mar Biotechnol 7:21–25 [CrossRef]
    [Google Scholar]
  8. Kashiwa M., Nishimoto S., Takahashi K., Ike M., Fujita M. 2000; Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. J Biosci Bioeng 89:528–533 [CrossRef]
    [Google Scholar]
  9. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172 [CrossRef]
    [Google Scholar]
  10. Kawasaki H., Hoshino Y., Hirata A., Yamasato K. 1993; Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. Arch Microbiol 160:358–362
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  14. Oremland R. S., Stolz J. F. 2000; Dissimilatory reduction of selenate and arsenate in nature. In Environmental Microbe-Metal Interactions pp  199–224 Edited by Lovley D. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Oremland R. S., Stolz J. F. 2003; The ecology of arsenic. Science 300:939–944 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Stolz J. F., Basu P., Oremland R. S. 2002; Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5:201–207 [CrossRef]
    [Google Scholar]
  18. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  19. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  20. Yamamura S., Ike M., Fujita M. 2003; Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1. J Biosci Bioeng 96:454–460 [CrossRef]
    [Google Scholar]
  21. Yamamura S., Terashi S., Ike M., Yamashita M., Fujita M. 2004; Characterization of arsenate-, selenate- and nitrate-reducing activities in Bacillus sp. SF-1. Jpn J Water Treat Biol 40:161–168 [CrossRef]
    [Google Scholar]
  22. Yamamura S., Yamamoto N., Ike M., Fujita M. 2005; Arsenic extraction from solid phase using a dissimilatory arsenate-reducing bacterium. J Biosci Bioeng 100:219–222 [CrossRef]
    [Google Scholar]
  23. Yoon J.-H., Kang S.-S., Lee K.-C., Kho Y. H., Choi S. H., Kang K. H., Park Y.-H. 2001; Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 51:1087–1092 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64667-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64667-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error