1887

Abstract

An anaerobic, moderately thermoacidophilic bacterium, strain 761-119, was isolated from an acidic hot spring in the Orange Field of the Uzon Caldera (Kamchatka, far-eastern Russia). Cells were spore-forming, Gram-positive rods, possessing one polar flagellum. Growth of strain 761-119 was observed between 37 and 68 °C and in the pH range 3.2–7.1. No growth was observed within 5 days of incubation at or below 35 °C and at or above 70 °C, as well as at or below pH 2.8 and at or above pH 7.5. The optimal temperature and pH for growth were 55 °C and pH 5.7, respectively. A wide range of carbohydrates and polysaccharides were fermented, as well as peptides and proteinaceous substrates. The main products of glucose fermentation were acetate, ethanol, lactate, H and CO. The DNA G+C content was 34 (±0.5) mol%. 16S rRNA gene sequence analysis indicated that strain 761-119 belonged to the genus . The level of 16S rRNA gene sequence similarity with other species was 86.5–97.8 %, with the only moderately acidophilic member of this genus, , being one of its closest relatives. DNA–DNA hybridization with showed 33 % relatedness. Thus, morphological (one polar flagellum) and physiological characteristics (lower pH limit of growth at pH 3.2 compared with ) and 16S rRNA gene sequence analyses revealed that strain 761-119 represents a novel species in the genus , for which the name sp. nov. is proposed, with the type strain 761-119 (=DSM 16487=VKM B-2363).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64633-0
2007-02-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/260.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64633-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum G. E., Woese G. E., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Bonch-Osmolovskaya E. A., Miroshnichenko M. L. 1994; The influence of molecular hydrogen and elemental sulfur on the metabolism of extremely thermophilic archaea of genus Thermococcus . Microbiology (English translation of Mikrobiologiia ) 63433–437
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov., sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [CrossRef]
    [Google Scholar]
  4. Brock T. D. 1986; Notes on the ecology of thermophilic archaebacteria. Syst Appl Microbiol 7:213–215 [CrossRef]
    [Google Scholar]
  5. Cann I. K. O., Stroot P. G., Mackie K. R., White B. A., Mackie R. I. 2001; Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium . Int J Syst Evol Microbiol 51:293–302
    [Google Scholar]
  6. Garrity G. M., Bell J. A., Lilburn T. G. 2005; Taxonomic outline of the prokaryotes. In Bergey's Manual of Systematic Bacteriology , 2nd edn. New York: Springer; http://141.150.157.80/bergeysoutline/main.htm
    [Google Scholar]
  7. Itoh T., Suzuki K., Sanchez P. C., Nakase T. 2003; Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Microbiol 53:1149–1154 [CrossRef]
    [Google Scholar]
  8. Johnson D. B. 1998; Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317 [CrossRef]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–32 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  10. Lee Y. E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen.nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii , Clostridium thermosulfurogenes , and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb.nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus . Int J Syst Bacteriol 43:41–51 [CrossRef]
    [Google Scholar]
  11. Liu S.-Y., Rainey F. A., Morgan H. W., Mayer F., Wiegel J. 1996; Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium . Int J Syst Bacteriol 46:388–396 [CrossRef]
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  14. Prokofeva M. I., Miroshnichenko M. L., Kostrikina N. A., Chernyh N. A., Kuznetsov B. B., Tourova T. P., Bonch-Osmolovskaya E. A. 2000; Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka. Int J Syst Evol Microbiol 50: 2001–2008 [CrossRef]
    [Google Scholar]
  15. Prokofeva M. I., Kublanov I. V., Nercessian O., Tourova T. P., Kolganova T. V., Lebedinsky A. V., Bonch-Osmolovskaya E. A., Spring S., Jeanthon C. 2005; Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats. Extremophiles 9:437–448 [CrossRef]
    [Google Scholar]
  16. Segerer A., Langworthy T. A., Stetter K. O. 1988; Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. . Syst Appl Microbiol 10:161–171 [CrossRef]
    [Google Scholar]
  17. Sokolova T. G., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kolganova T. V., Bonch-Osmolovskaya E. A. 2002; Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967 [CrossRef]
    [Google Scholar]
  18. Van De Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  19. Wiegel J., Canganella F. 2001; Extreme thermophiles. In Encyclopedia of Life Sciences , article 392 Chichester: Wiley; http://www.els.net
    [Google Scholar]
  20. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2888
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64633-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64633-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error