1887

Abstract

An anaerobic, moderately thermoacidophilic bacterium, strain 761-119, was isolated from an acidic hot spring in the Orange Field of the Uzon Caldera (Kamchatka, far-eastern Russia). Cells were spore-forming, Gram-positive rods, possessing one polar flagellum. Growth of strain 761-119 was observed between 37 and 68 °C and in the pH range 3.2–7.1. No growth was observed within 5 days of incubation at or below 35 °C and at or above 70 °C, as well as at or below pH 2.8 and at or above pH 7.5. The optimal temperature and pH for growth were 55 °C and pH 5.7, respectively. A wide range of carbohydrates and polysaccharides were fermented, as well as peptides and proteinaceous substrates. The main products of glucose fermentation were acetate, ethanol, lactate, H and CO. The DNA G+C content was 34 (±0.5) mol%. 16S rRNA gene sequence analysis indicated that strain 761-119 belonged to the genus . The level of 16S rRNA gene sequence similarity with other species was 86.5–97.8 %, with the only moderately acidophilic member of this genus, , being one of its closest relatives. DNA–DNA hybridization with showed 33 % relatedness. Thus, morphological (one polar flagellum) and physiological characteristics (lower pH limit of growth at pH 3.2 compared with ) and 16S rRNA gene sequence analyses revealed that strain 761-119 represents a novel species in the genus , for which the name sp. nov. is proposed, with the type strain 761-119 (=DSM 16487=VKM B-2363).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64633-0
2007-02-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/260.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64633-0&mimeType=html&fmt=ahah

References

  1. Balch, W. E., Fox, G. E., Magrum, G. E., Woese, G. E. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  2. Bonch-Osmolovskaya, E. A. & Miroshnichenko, M. L. ( 1994; ). The influence of molecular hydrogen and elemental sulfur on the metabolism of extremely thermophilic archaea of genus Thermococcus. Microbiology (English translation of Mikrobiologiia) 63, 433–437.
    [Google Scholar]
  3. Bonch-Osmolovskaya, E. A., Sokolova, T. G., Kostrikina, N. A. & Zavarzin, G. A. ( 1990; ). Desulfurella acetivorans gen. nov., sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153, 151–155.[CrossRef]
    [Google Scholar]
  4. Brock, T. D. ( 1986; ). Notes on the ecology of thermophilic archaebacteria. Syst Appl Microbiol 7, 213–215.[CrossRef]
    [Google Scholar]
  5. Cann, I. K. O., Stroot, P. G., Mackie, K. R., White, B. A. & Mackie, R. I. ( 2001; ). Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol 51, 293–302.
    [Google Scholar]
  6. Garrity, G. M., Bell, J. A. & Lilburn, T. G. ( 2005; ). Taxonomic outline of the prokaryotes. In Bergey's Manual of Systematic Bacteriology, 2nd edn. New York: Springer. http://141.150.157.80/bergeysoutline/main.htm
  7. Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T. ( 2003; ). Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Microbiol 53, 1149–1154.[CrossRef]
    [Google Scholar]
  8. Johnson, D. B. ( 1998; ). Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27, 307–317.[CrossRef]
    [Google Scholar]
  9. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–32. Edited by H. N. Munro. New York: Academic Press.
  10. Lee, Y. E., Jain, M. K., Lee, C., Lowe, S. E. & Zeikus, J. G. ( 1993; ). Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43, 41–51.[CrossRef]
    [Google Scholar]
  11. Liu, S.-Y., Rainey, F. A., Morgan, H. W., Mayer, F. & Wiegel, J. ( 1996; ). Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int J Syst Bacteriol 46, 388–396.[CrossRef]
    [Google Scholar]
  12. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  13. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  14. Prokofeva, M. I., Miroshnichenko, M. L., Kostrikina, N. A., Chernyh, N. A., Kuznetsov, B. B., Tourova, T. P. & Bonch-Osmolovskaya, E. A. ( 2000; ). Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka. Int J Syst Evol Microbiol 50, 2001–2008.[CrossRef]
    [Google Scholar]
  15. Prokofeva, M. I., Kublanov, I. V., Nercessian, O., Tourova, T. P., Kolganova, T. V., Lebedinsky, A. V., Bonch-Osmolovskaya, E. A., Spring, S. & Jeanthon, C. ( 2005; ). Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats. Extremophiles 9, 437–448.[CrossRef]
    [Google Scholar]
  16. Segerer, A., Langworthy, T. A. & Stetter, K. O. ( 1988; ). Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst Appl Microbiol 10, 161–171.[CrossRef]
    [Google Scholar]
  17. Sokolova, T. G., Kostrikina, N. A., Chernyh, N. A., Tourova, T. P., Kolganova, T. V. & Bonch-Osmolovskaya, E. A. ( 2002; ). Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52, 1961–1967.[CrossRef]
    [Google Scholar]
  18. Van De Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  19. Wiegel, J. & Canganella, F. ( 2001; ). Extreme thermophiles. In Encyclopedia of Life Sciences, article 392. Chichester: Wiley. http://www.els.net
  20. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2888.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64633-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64633-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error