1887

Abstract

Two strains named ESC1 and ESC5 were isolated from nodules of growing in a Spanish soil. Phylogenetic analysis of the 16S rRNA gene showed that these strains belong to the genus , their closest relatives being and , with 100 and 99.9 % similarity to the respective type strains. Despite this high similarity, the results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses showed that these strains represent a novel species of genus . The DNA–DNA hybridization values were respectively 70, 66 and 55 % with respect to LUP21, DSM 6882 and DSM 13340. The predominant fatty acids were C 7 and C 2-OH. Strains ESC1 and ESC5 were strictly aerobic and were able to reduce nitrate and to hydrolyse aesculin. They produced -galactosidase and -glucosidase and did not produce urease after 48 h incubation. The G+C content of strain ESC1 was 56.4 mol%. Both strains ESC1 and ESC5 contained and genes on megaplasmids that were related phylogenetically to those of rhizobial strains nodulating , , and . From the results of this work, we propose that the strains isolated in this study be included in a novel species named sp. nov. The type strain is ESC1 (=LMG 22713=CECT 7172).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64613-0
2007-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/784.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64613-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Bergersen, F. J. ( 1961; ). The growth of Rhizobium in synthetic media. Aust J Biol 14, 349–360.
    [Google Scholar]
  3. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  4. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  5. Doetsch, R. N. ( 1981; ). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. H. Phillips. Washington, DC: American Society for Microbiology.
  6. Escara, J. F. & Hutton, J. R. ( 1980; ). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19, 1315–1327.[CrossRef]
    [Google Scholar]
  7. Herrera-Cervera, J. A., Caballero-Mellado, J., Laguerre, G., Tichy, H.-V., Requena, N., Amarger, N., Martínez-Romero, E., Olivares, J., & Sanjuán, J. ( 1999; ). At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol Ecol 30, 87–97.[CrossRef]
    [Google Scholar]
  8. Holmes, B., Popoff, M., Kiredjian, M. & Kersters, K. ( 1988; ). Ochrobactrum anthropi gen. nov., sp. nov. from human clinic specimens and previously known as group Vd. Int J Syst Bacteriol 38, 406–416.[CrossRef]
    [Google Scholar]
  9. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  10. Jahnke, K. D. ( 1992; ). basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15, 61–73.[CrossRef]
    [Google Scholar]
  11. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  12. Kumar, S., Tamura, K., Jakobsen, I.-B. & Nei, M. ( 2001; ). Molecular evolutionary genetics analysis software. Tempe, AZ: Arizona State University.
  13. Lebuhn, M., Achouak, W., Schloter, M., Berge, O., Meier, H., Barakat, M., Hartmann, A. & Heulin, T. ( 2000; ). Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 50, 2207–2223.[CrossRef]
    [Google Scholar]
  14. Lebuhn, M., Bathe, S., Achouak, W., Hartmann, A., Heulin, T. & Schloter, M. ( 2006; ). Comparative sequence analysis of the internal transcribed spacer 1 of Ochrobactrum species. Syst Appl Microbiol 29, 265–275.[CrossRef]
    [Google Scholar]
  15. Rivas, R., Velázquez, E., Valverde, A., Mateos, P. F. & Martínez-Molina, E. ( 2001; ). A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22, 1086–1089.[CrossRef]
    [Google Scholar]
  16. Rivas, R., Velázquez, E., Palomo, J.-L., Mateos, P. F., García-Benavides, P. & Martínez-Molina, E. ( 2002a; ). Rapid identification of Clavibacter michiganensis subspecies sepedonicus using two primers random amplified polymorphic DNA (TP-RAPD) fingerprints. Eur J Plant Pathol 108, 179–184.[CrossRef]
    [Google Scholar]
  17. Rivas, R., Velázquez, E., Willems, A., Vizcaíno, N., Subba-Rao, N. S., Mateos, P. F., Gillis, M., Dazzo, F. B. & Martínez-Molina, E. ( 2002b; ). A new species of Devosia that forms a nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L. f.) Druce. Appl Environ Microbiol 68, 5217–5222.[CrossRef]
    [Google Scholar]
  18. Rivas, R., Willems, A., Subba-Rao, N. S., Mateos, P. F., Dazzo, F. B., Martínez-Molina, E., Gillis, M. & Velázquez, E. ( 2003; ). Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26, 47–53.[CrossRef]
    [Google Scholar]
  19. Rivas, R., Abril, A., Trujillo, M. E. & Velázquez, E. ( 2004; ). Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. Int J Syst Evol Microbiol 54, 2147–2150.[CrossRef]
    [Google Scholar]
  20. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  21. Sy, A., Giraud, E., Jourand, P., García, N., Willems, A., de Lajudie, A. P., Prin, Y., Neyra, M., Gillis, M. & other authors ( 2001; ). Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183, 214–220.[CrossRef]
    [Google Scholar]
  22. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  23. Trujillo, M. E., Willems, A., Abril, A., Planchuelo, A. M., Rivas, R., Ludeña, D., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2005; ). Nodulation of Lupinus by strains of the new species Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71, 1318–1327.[CrossRef]
    [Google Scholar]
  24. Trujillo, M. E., Willems, A., Abril, A., Planchuelo, A. M., Rivas, R., Ludeña, D., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2006; ). Ochrobactrum lupini sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, List no. 110. Int J Syst Evol Microbiol 56, 1459–1460.[CrossRef]
    [Google Scholar]
  25. Valverde, A., Velázquez, E., Fernández-Santos, F., Vizcaino, N., Rivas, R., Mateos, P. F., Martinez-Molina, E., Igual, J. M. & Willems, A. ( 2005; ). Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55, 1985–1989.[CrossRef]
    [Google Scholar]
  26. van Berkum, P. & Eardly, B. ( 2002; ). The aquatic budding bacterium Blastobacter denitrificans is a nitrogen fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 68, 1132–1136.[CrossRef]
    [Google Scholar]
  27. van Rhijn, P., Luyten, E., Vlassak, K. & Vanderleyden, J. ( 1996; ). Isolation and characterization of a pSym locus of Rhizobium sp. BR816 that extends nodulation ability of narrow host range Phaseolus vulgaris symbionts to Leucaena leucocephala. Mol Plant Microbe Interact 9, 74–77.[CrossRef]
    [Google Scholar]
  28. Velázquez, E., Peix, A., Zurdo-Piñeiro, J. L., Palomo, J. L., Mateos, P. F., Rivas, R., Muñoz-Adelantado, E., Toro, N., García-Benavides, P. & other authors ( 2005; ). The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumours or hairy roots in plants. Mol Plant Microbe Interact 18, 1325–1332.[CrossRef]
    [Google Scholar]
  29. Vincent, J. M. ( 1970; ). The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of the Root-Nodule Bacteria, pp. 1–13. Oxford: Blackwell Scientific.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64613-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64613-0
Loading

Data & Media loading...

Supplements

TP-RAPD profiles obtained by using the primer pairs 27F and 1522R (lanes 1–5) and 879F and 1522R (lanes 6–10).Lanes: 1 and 6, strain ESC1 ; 2 and 7, strain ESC5; 3 and 8, LMG 18957 ; 4 and 9, LMG 3331 ; 5 and 10, LUP21 . Lanes MW, standard VI of Boehringer-Roche.

IMAGE

Comparative sequence analysis of gene sequences (320 nt) (Fig. S2) and gene sequences (296 nt) of strain ESC1 and representative strains that nodulate legumes. [PDF](17 KB)

PDF

Nodules induced by strain ESC1 (a) and CFN42 (b) on roots. Bars, 0.3 cm.

IMAGE

[PDF file of Supplementary Tables S1 and S2](35 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error