1887

Abstract

A facultative chemoautotrophic bacterium, strain MLHE-1, was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1 were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1 could oxidize but not grow on CO, while CH neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1 assimilated inorganic carbon via the Calvin–Benson–Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1 grew over broad ranges of pH (7.3–10.0; optimum, 9.3), salinity (15–190 g l; optimum 30 g l) and temperature (13–40 °C; optimum, 30 °C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1 in the class (family ) and most closely related to (98.5 %) and (98.6 %), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1 was able to oxidize As(III). On the basis of physiological characteristics and DNA–DNA hybridization data, it is suggested that strain MLHE-1 represents a novel species within the genus for which the name is proposed. The type strain is MLHE-1 (=DSM 17681=ATCC BAA-1101). Aspects of the annotated full genome of are discussed in the light of its physiology.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64576-0
2007-03-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/3/504.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64576-0&mimeType=html&fmt=ahah

References

  1. Anthony, C. ( 1982; ). The Biochemistry of Methylotrophs. London: Academic Press.
  2. Ehrlich, H. L. ( 2002; ). Bacterial oxidation of As(III) compounds. In Environmental Chemistry of Arsenic, pp. 313–328. Edited by W. T. Frankenberger, Jr. New York, USA: Marcel Dekker.
  3. Gihring, T. M., Druschel, G. K., McCleskey, R. B., Hamers, R. J. & Banfield, J. F. ( 2001; ). Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35, 3857–3862.[CrossRef]
    [Google Scholar]
  4. Green, H. H. ( 1918; ). Description of a bacterium which oxidizes arsenite to arsenate, and one which reduces arsenate to arsenite, isolated from a cattle-dipping tank. S Afr J Sci 14, 465–467.
    [Google Scholar]
  5. Harvey, C. F., Swartz, C. H., Badruzzaman, A. B., Keon-Blute, N., Yu, W., Ali, M. A., Jay, J., Beckie, R., Niedan, V. & other authors ( 2002; ). Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602–1606.[CrossRef]
    [Google Scholar]
  6. Hobbie, J. E., Daley, R. L. & Jasper, S. ( 1977; ). Use of Nuclepore filters for counting bacteria for fluorescence microscopy. Appl Environ Microbiol 33, 1225–1228.
    [Google Scholar]
  7. Hoeft, S. E., Lucas, F., Hollibaugh, J. T. & Oremland, R. S. ( 2002; ). Characterization of microbial arsenate reduction in the anoxic bottom waters of Mono Lake, California. Geomicrobiol J 19, 23–40.[CrossRef]
    [Google Scholar]
  8. Humayoun, S. B., Bano, N. & Hollibaugh, J. T. ( 2003; ). Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69, 1030–1042.[CrossRef]
    [Google Scholar]
  9. Humphreys, G. O., Willshaw, G. A. & Anderson, E. S. ( 1975; ). A simple method for the preparation of large quantities of pure plasmid DNA. Biochim Biophys Acta 383, 457–463.[CrossRef]
    [Google Scholar]
  10. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  11. Kent, D. B. & Fox, P. M. ( 2004; ). The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer. Geochem Trans 5, 1. doi: 10.1186/1467-4866-5-1[CrossRef]
    [Google Scholar]
  12. King, G. M. ( 2003a; ). Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microbiol 69, 4067–4075.[CrossRef]
    [Google Scholar]
  13. King, G. M. ( 2003b; ). Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol 69, 7257–7265.[CrossRef]
    [Google Scholar]
  14. King, G. M. ( 2006; ). Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria. FEMS Microbiol Ecol 56, 1–7.[CrossRef]
    [Google Scholar]
  15. Lin, J.-L., Joye, S. B., Scholten, J. C. M., Schäfer, H., McDonald, I. R. & Murrell, J. C. ( 2005; ). Analysis of methane monooxygenase genes in Mono Lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure. Appl Environ Microbiol 71, 6458–6462.[CrossRef]
    [Google Scholar]
  16. Ochman, H. & Davalos, L. M. ( 2006; ). The nature and dynamics of bacterial genomes. Science 311, 1730–1733.[CrossRef]
    [Google Scholar]
  17. Oremland, R. S., & Stolz, J. F. ( 2003; ). The ecology of arsenic. Science 300, 939–944.[CrossRef]
    [Google Scholar]
  18. Oremland, R. S., Hoeft, S. E., Santini, J. M., Bano, N., Hollibaugh, R. A. & Hollibaugh, J. T. ( 2002; ). Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68, 4795–4802.[CrossRef]
    [Google Scholar]
  19. Oremland, R. S., Stolz J. F. & Hollibaugh, J. T. ( 2004; ). The microbial arsenic cycle in Mono Lake, California. FEMS Microbiol Ecol 48, 15–27.[CrossRef]
    [Google Scholar]
  20. Oremland, R. S., Kulp, T. R., Switzer Blum, J., Hoeft, S. E., Baesman, S., Miller, L. G. & Stolz, J. F. ( 2005; ). A microbial arsenic cycle in a salt-saturated, extreme environment. Science 308, 1305–1308.[CrossRef]
    [Google Scholar]
  21. Rhine, E. D., Phelps, C. D. & Young, L. Y. ( 2006; ). Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8, 899–908.[CrossRef]
    [Google Scholar]
  22. Rijkenberg, M. J. A., Kort, R. & Hellingwerf, K. J. ( 2001; ). Alkalispirillum mobile gen. nov., spec. nov., an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae. Arch Microbiol 175, 369–375.[CrossRef]
    [Google Scholar]
  23. Salmassi, T. M., Venkateswaren, K., Satomi, M., Nealson, K. H., Newman, D. K. & Hering, J. G. ( 2002; ). Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol J 19, 53–66.[CrossRef]
    [Google Scholar]
  24. Santini, J. M. & vanden Hoven, R. N. ( 2004; ). Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer strain NT-26. J Bacteriol 186, 1614–1619.[CrossRef]
    [Google Scholar]
  25. Santini, J. M., Sly, L. I., Schnagl, R. D. & Macy, J. M. ( 2000; ). A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66, 92–97.[CrossRef]
    [Google Scholar]
  26. Senn, D. B. & Hemond, H. F. ( 2002; ). Nitrate controls on iron and arsenic in an urban lake. Science 296, 2373–2376.[CrossRef]
    [Google Scholar]
  27. Silver, S. & Phung, L. T. ( 2005; ). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71, 599–608.[CrossRef]
    [Google Scholar]
  28. Sorokin, D. Y., Zhilina, T. N., Lysenko, A. M., Tourova, T. P. & Spiridonova, E. M. ( 2006; ). Metabolic versatility of haloalkaliphilic bacteria from soda lakes belonging to the Alkalispirillum–Alkalilimnicola group. Extremophiles 10, 213–220.[CrossRef]
    [Google Scholar]
  29. Stolz, J. F., Basu, P., Santini, J. M. & Oremland, R. S. ( 2006; ). Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60, 107–130.[CrossRef]
    [Google Scholar]
  30. Switzer Blum, J., Burns Bindi, A., Buzzelli, J., Stolz, J. F. & Oremland, R. S. ( 1998; ). Bacillus arsenicoselenatis sp. nov., and Bacillus selenitireducens sp. nov.: two haloalkaliphiles from Mono Lake, California which respire oxyanions of selenium and arsenic. Arch Microbiol 171, 19–30.[CrossRef]
    [Google Scholar]
  31. Swofford, D. L. ( 2002; ). paup*: Phylogenetic analysis using parsimony (* and other methods), version 4. Sunderland, MA: Sinauer Associates.
  32. Tabita, F. R. & McFadden, B. A. ( 1976; ). Molecular and catalytic properties of ribulose 1,5-bisphosphate carboxylase from the photosynthetic extreme halophile Ectothiorhodospira halophila. J Bacteriol 126, 1271–1277.
    [Google Scholar]
  33. vanden Hoven, R. N. & Santini, J. M. ( 2004; ). Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta 1656, 148–155.[CrossRef]
    [Google Scholar]
  34. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  35. Yakimov, M. M., Giuliano, L., Chernikova, T. N., Gentile, G., Abraham, W.-R., Lünsdorf, H., Timmis, K. N. & Golyshin, P. N. ( 2001; ). Alcalilimnicola halodurans gen. nov., sp. nov., an alkaliphilic, moderately halophilic and extremely halotolerant bacterium, isolated from sediments of soda-depositing Lake Natron, East Africa Rift Valley. Int J Syst Evol Microbiol 51, 2133–2143.[CrossRef]
    [Google Scholar]
  36. Zumft, W. ( 1997; ). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61, 533–616.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64576-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64576-0
Loading

Data & Media loading...

[PDF] 

PDF

Lithotrophic growth of strain MLHE-1 on a variety of inorganic electron donors and on a diversity of organic and one-carbon electron donors with nitrate (10 mM) or oxygen (air head space) as the electron acceptor. [PDF](28 KB)

PDF

Further details of the methods used for PCR amplification and gene fragment analysis. [PDF](39 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error