1887

Abstract

A novel, extremely halophilic bacterium was isolated from brine samples collected from Ezzemoul sabkha in north-east Algeria. Cells of this isolate, designated B2, were Gram-negative, rod-shaped and motile. Growth occurred between 10 and 25 % (w/v) NaCl and the isolate grew optimally at 15–20 % (w/v) NaCl. The pH range for growth was 6.0–9.0 with an optimum at pH 7.0–7.5. The predominant fatty acids were C and C 9. Other fatty acids present were C 9, C 10-methyl, C 3-OH, C and C. The G+C content of the genomic DNA was 56.0 mol%. 16S rRNA gene sequence analysis indicated that strain B2 was closely related to in the . The level of 16S rRNA gene sequence similarity between strain B2 and the type strain of was 99 %. DNA–DNA hybridization experiments between strain B2 and indicated a level of relatedness of 52 %. The phenotypic characteristics of strain B2 allowed its differentiation from recognized species of the genus . Strain B2 was able to hydrolyse starch but not aesculin. It was unable to use carbohydrates and could not use citrate, pyruvate or succinate as sole carbon and energy sources. On the basis of the polyphasic data presented, strain B2 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is B2 (=CECT 7106=LMG 23122).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64482-0
2006-11-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/11/2647.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64482-0&mimeType=html&fmt=ahah

References

  1. Antón J., Llobet-Brossa E., Rodriguez-Valera F., Amann R. 1999; Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523 [CrossRef]
    [Google Scholar]
  2. Antón J., Rosselló-Mora R., Rodríguez-Valera F., Amann R. 2000; Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057 [CrossRef]
    [Google Scholar]
  3. Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R., Roselló-Mora R. 2002; Salinibacter ruber gen. nov., sp. nov. a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491
    [Google Scholar]
  4. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  5. Eder W., Ludwig W., Huber R. 1999; Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213–218 [CrossRef]
    [Google Scholar]
  6. Ferragut C., Leclerc H. 1976; Etude comparative des méthodes de détermination du Tm de l'ADN bactérien. Ann Microbiol 127A:223–235 (in French
    [Google Scholar]
  7. Gonzalez C., Gutiérrez C., Ramírez C. 1978; Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolising extremely halophilic bacterium. Can J Microbiol 24:710–715 [CrossRef]
    [Google Scholar]
  8. Gorshkova N. M., Ivanova E. P., Sergeev A. F., Zhukova N. V., Alexeeva Y., Wright J. P., Nicolau D. V., Mikhailov V. V., Christen R. 2003; Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53:2073–2078 [CrossRef]
    [Google Scholar]
  9. Gutiérrez C., Gonzalez C. 1972; Methods for simultaneous detection of proteinase and esterase in extremely halophilic bacteria. Appl Microbiol 24:516–517
    [Google Scholar]
  10. Kumar S., Tamura K., Nei M. 2004; mega 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  11. Labrenz M., Lawson P. A., Tindall B. J., Collins M. D., Hirsch P. 2003; Saccharospirillum impatiens gen. nov., sp. nov., a novel γ - Proteobacterium isolated from hypersaline Ekho Lake (East Antarctica). Int J Syst Evol Microbiol 53:653–660 [CrossRef]
    [Google Scholar]
  12. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–216 [CrossRef]
    [Google Scholar]
  14. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  15. Maturrano L., Valens-Vadell M., Rosselló-Mora R., Antón J. 2006; Salicola marasensis gen. nov., sp. nov an extremely halophilic bacterium isolated from the Maras solar salterns in Peru. Int J Syst Evol Microbiol 561685–1691 [CrossRef]
    [Google Scholar]
  16. Nguyen B. H., Denner E. B. M., Dang T. C. H., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [CrossRef]
    [Google Scholar]
  17. Oren A. 1990a; Estimation of the contribution of halobacteria to the bacterial biomass and activity in solar salterns by the use of bile salts. FEMS Microbiol Ecol 73:41–48 [CrossRef]
    [Google Scholar]
  18. Oren A. 1990b; The use of protein synthesis inhibitors in the estimation of the contribution of halophilic archaebacteria to bacterial activity in hypersaline environments. FEMS Microbiol Ecol 73:187–192 [CrossRef]
    [Google Scholar]
  19. Oren A. 1994; The ecology of the extremely halophilic archaea. FEMS Microbiol Rev 13:415–440 [CrossRef]
    [Google Scholar]
  20. Oren A. 2002; Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63 [CrossRef]
    [Google Scholar]
  21. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists pp  277–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  22. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491 [CrossRef]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp  409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. D., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Sorokin D. Y., Tourova T. P., Galinski E. A., Belloch C., Tindall B. J. 2006; Extremely halophilic denitrifying bacteria from hypersaline inland lakes, Halovibrio denitrificans sp.nov., and Halospina denitrificans gen. nov., sp. nov.,and evidence that the genus name Halovibrio Fendrich 1989 with the type species H. variabilis should be associated with DSM 3050. Int J Syst Evol Microbiol 56:379–388 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  26. Ventosa A., Nieto J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  27. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  28. Yoon J.-H., Lee K.-C., Kho Y. H., Kang K. H., Kim C.-J., Park Y.-H. 2002; Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52:123–130
    [Google Scholar]
  29. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.64482-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64482-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error