1887

Abstract

Enrichments at 2 M NaCl and pH 7.5–8, with thiosulfate or sulfide as electron donor, inoculated with sediments from hypersaline chloride–sulfate lakes of the Kulunda Steppe (Altai, Russia) resulted in the domination of two different groups of moderately halophilic, chemolithoautotrophic, sulfur-oxidizing bacteria. Under fully aerobic conditions with thiosulfate, bacteria belonging to the genus dominated while, under microaerophilic conditions, a highly motile, short vibrio-shaped phenotype outcompeted the halothiobacilli. Three genetically and phenotypically highly similar vibrio-shaped isolates were obtained in pure culture and one of them, strain HL 5, was identified as a member of the cluster by 16S rRNA gene sequencing. The new isolates were able to grow with thiosulfate as electron donor within a broad salinity range from 0.5 to 3.5 M NaCl with an optimum at 1.5 M and within a pH range from 6.5 to 8.5 with an optimum at pH 7.5–7.8. Comparative analysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) gene sequences demonstrated that strain HL 5 possessed two genes, and , of the form I RuBisCO and a gene of the form II RuBisCO, similar to the other members of the cluster. On the basis of phenotypic and genetic comparison, the new halophilic isolates are proposed to be placed into a novel species, sp. nov. (type strain HL 5=DSM 15072=UNIQEM U 221).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64445-0
2006-10-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2375.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64445-0&mimeType=html&fmt=ahah

References

  1. Brinkhoff, T. & Muyzer, G. ( 1997; ). Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63, 3789–3796.
    [Google Scholar]
  2. Brinkhoff, T., Kuever, J., Muyzer, G. & Jannasch, H. W. ( 2005; ). Genus VI. Thiomicrospira Kuenen and Veldkamp 1972, 253AL. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part B, The Gammaproteobacteria, pp. 193–199. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  3. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  4. Fennoy, S. L. & Bailey-Serres, J. ( 1993; ). Synonymous codon usage in Zea mays L. nuclear genes is varied by levels of C- and G-ending codons. Nucleic Acids Res 21, 5294–5300.[CrossRef]
    [Google Scholar]
  5. Kelly, D. P. & Wood, A. P. ( 2000; ). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50, 511–516.[CrossRef]
    [Google Scholar]
  6. Knittel, K., Kuever, J., Meyerdierks, A., Meinke, R., Amann, R. & Brinkhoff, T. ( 2005; ). Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. Int J Syst Evol Microbiol 55, 781–786.[CrossRef]
    [Google Scholar]
  7. Marmur, J. ( 1961; ). A procedure for isolation of DNA from microorganisms. J Mol Biol 3, 208–214.[CrossRef]
    [Google Scholar]
  8. Musto, H., Romero, H. & Rodriguez-Maseda, H. ( 1998; ). Heterogeneity in codon usage in the flatworm Schistosoma mansoni. J Mol Evol 46, 159–167.[CrossRef]
    [Google Scholar]
  9. Muto, A. & Osawa, S. ( 1987; ). The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A 84, 166–169.[CrossRef]
    [Google Scholar]
  10. Nelson, D. C. & Jannasch, H. W. ( 1983; ). Chemolithoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136, 262–269.[CrossRef]
    [Google Scholar]
  11. Nishihara, H., Igarashi, Y. & Kodama, T. ( 1991; ). Hydrogenovibrio marinus gen. nov., sp. nov., a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium. Int J Syst Bacteriol 41, 130–133.[CrossRef]
    [Google Scholar]
  12. Ohtaka, C. & Ishikawa, H. ( 1993; ). Accumulation of adenine and thymine in a groE-homologous operon of an intracellular symbiont. J Mol Evol 36, 121–126.[CrossRef]
    [Google Scholar]
  13. Ollivier, B., Caumette, P., Garcia, J.-L. & Mah, R. A. ( 1994; ). Anaerobic bacteria from hypersaline environments. Microbiol Rev 58, 27–38.
    [Google Scholar]
  14. Oren, A. ( 1999; ). Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63, 334–348.
    [Google Scholar]
  15. Oren, A. ( 2002; ). Halophilic Microorganisms and their Environments. Dordrecht: Kluwer.
  16. Pfennig, N. & Lippert, K. D. ( 1966; ). Über das Vitamin B12-bedürfnis phototropher Schwefel bacterien. Arch Microbiol 55, 245–256 (in German).
    [Google Scholar]
  17. Sørensen, K. B., Canfield, D. E. & Oren, A. ( 2004; ). Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl Environ Microbiol 70, 1608–1616.[CrossRef]
    [Google Scholar]
  18. Sorokin, D. Yu. & Kuenen, J. G. ( 2005; ). Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29, 685–702.[CrossRef]
    [Google Scholar]
  19. Sorokin, D. Yu., Lysenko, A. M., Mityushina, L. L., Tourova, T. P., Jones, B. E., Rainey, F. A., Robertson, L. A. & Kuenen, G. J. ( 2001; ). Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51, 565–580.
    [Google Scholar]
  20. Spiridonova, E. M., Berg, I. A., Kolganova, T. V., Ivanovskii, R. N., Kuznetsov, B. B. & Tourova, T. P. ( 2004; ). An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology (English translation of Mikrobiologiia) 73, 377–387.
    [Google Scholar]
  21. Takai, K., Hirayama, H., Nakagawa, T., Suzuki, Y., Nealson, K. H. & Horikoshi, K. ( 2004; ). Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, Western Pacific. Int J Syst Evol Microbiol 54, 2325–2333.[CrossRef]
    [Google Scholar]
  22. Tourova, T. P., Spiridonova, E. M., Berg, I. A., Kuznetsov, B. B. & Sorokin, D. Yu. ( 2006; ). Occurrence, phylogeny and evolution of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in obligately chemolithoautotrophic sulfur-oxidizing bacteria of the genera Thiomicrospira and Thioalkalimicrobium. Microbiology 152, 2159–2169.[CrossRef]
    [Google Scholar]
  23. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  24. Wood, A. P. & Kelly, D. P. ( 1991; ). Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulfur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156, 277–280.[CrossRef]
    [Google Scholar]
  25. Yoshizawa, Y., Toyoda, K., Arai, H., Ishii, M. & Igarashi, Y. ( 2004; ). CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110. J Bacteriol 186, 5685–5691.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64445-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64445-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error