1887

Abstract

Three novel Gram-negative, non-fermenting aerobic bacilli were isolated from human clinical samples. They shared more than 99.8 % of the 16S rRNA gene nucleotide positions. The strains were related to with about 97.48 % 16S rRNA gene sequence similarity. In 16S rRNA gene-, - and -based phylogenies, the strains were grouped in a lineage that was distinct from other species in the family . Fatty acid composition, polar lipids, quinone system, DNA–DNA relatedness, genome organization, and physiological and biochemical data differentiated these isolates from recognized species of the genus . The three clinical strains therefore represent a novel species within the genus , for which the name sp. nov., is proposed. The type strain is ADV31 (=CIP 109116=DSM 17490). The DNA G+C content of strain ADV31 was 54.5 mol%.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64416-0
2007-05-01
2021-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/1007.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64416-0&mimeType=html&fmt=ahah

References

  1. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  2. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  3. Holmes B., Popoff M., Kiredjian M., Kersters K. 1988; Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as Group Vd. Int J Syst Bacteriol 38:406–416 [CrossRef]
    [Google Scholar]
  4. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  5. Kämpfer P., Blasczyk K., Auling G. 1994; Characterization of Aeromonas genomic species by using quinone, polyamine, and fatty acid patterns. Can J Microbiol 40:844–850 [CrossRef]
    [Google Scholar]
  6. Kämpfer P., Buczolits S., Albrecht A., Busse H. J., Stackebrandt E. 2003; Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896 [CrossRef]
    [Google Scholar]
  7. Kishino H., Hasegawa M. 1989; Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea . J Mol Evol 29:170–179 [CrossRef]
    [Google Scholar]
  8. Kluge A., Farris J. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  9. Lebuhn M., Achouak W., Schloter M., Berge O., Meier H., Barakat M., Hartmann A., Heulin T. 2000; Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp.nov. and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 50:2207–2223 [CrossRef]
    [Google Scholar]
  10. Lechner U., Baumbach R., Becker D., Kitunen V., Auling G., Salkinoja-Salonen M. 1995; Degradation of 4-chloro-2-methylphenol by an activated sludge isolate and its taxonomic description. Biodegradation 6:83–92 [CrossRef]
    [Google Scholar]
  11. Marchandin H., Jumas-Bilak E., Gay B., Teyssier C., Jean-Pierre H., Siméon de Buochberg M., Carrière C., Carlier J. P. 2003; Phylogenetic analysis of some Sporomusa sub-branch members isolated from human clinical specimens: description of Megasphaera micronuciformis sp. nov. Int J Syst Evol Microbiol 53:547–553 [CrossRef]
    [Google Scholar]
  12. Members of the SFM Antibiogram Committee 2003; Members of the SFM Antibiogram Committee report 2003. Int J Antimicrob Agents 21:364–391 [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  14. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  15. Romero C., Gamazo C., Pardo M., Lopez-Goni I. 1995; Specific detection of Brucella DNA by PCR. J Clin Microbiol 33:615–618
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Scholz H. C., Tomaso H., Dahouk S. A., Witte A., Schloter M., Kämpfer P., Falsen E., Neubauer H. 2006; Genotyping of Ochrobactrum anthropi by recA -based comparative sequence, PCR-RFLP, and 16S rRNA gene analysis. FEMS Microbiol Lett 257:7–16 [CrossRef]
    [Google Scholar]
  18. Teyssier C., Jumas-Bilak E., Marchandin H., Jean-Pierre H., Jeannot J.-L., Dusart G., Foulongne V., Siméon de Buochberg M. 2003a; Species identification and molecular epidemiology of bacteria belonging to Ochrobactrum genus. Pathol Biol 51:5–12 [CrossRef]
    [Google Scholar]
  19. Teyssier C., Marchandin H., Siméon de Buochberg M., Ramuz M., Jumas-Bilak E. 2003b; Atypical 16S rRNA gene copies in Ochrobactrum intermedium strains reveal a large genomic rearrangement by recombination between rrn copies. J Bacteriol 185:2901–2909 [CrossRef]
    [Google Scholar]
  20. Teyssier C., Marchandin H., Jean-Pierre H., Darbas H., Siméon de Buochberg M., Diego I., Gouby A., Jumas-Bilak E. 2005a; Molecular and phenotypic features for identification of the opportunistic pathogens Ochrobactrum spp. J Med Microbiol 54:945–953 [CrossRef]
    [Google Scholar]
  21. Teyssier C., Marchandin H., Masnou A., Jeannot J.-L., Siméon de Buochberg M., Jumas-Bilak E. 2005b; Pulsed-field gel electrophoresis to study the diversity of whole genome organization in the genus Ochrobactrum . Electrophoresis 26:2898–2907 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  24. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  25. Tripathi A. K., Verma S. C., Chowdhury S. P., Lebuhn M., Gattinger A., Schloter M. 2006; Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680 [CrossRef]
    [Google Scholar]
  26. Trujillo M. E., Willems A., Abril A., Planchuelo A. M., Rivas R., Ludena D., Mateos P. F., Martinez-Molina E., Velazquez E. 2005; Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327 [CrossRef]
    [Google Scholar]
  27. Velasco J., Romero C., Lopez-Goni I., Leiva J., Diaz R., Moriyon I. 1998; Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int J Syst Bacteriol 48:759–768 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64416-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64416-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error