1887

Abstract

A novel alkalitolerant, anaerobic bacterium, designated strain sk.kt5, was isolated from a metal coupon retrieved from a corrosion-monitoring reactor of a Danish district heating plant (Skanderborg, Jutland). The cells of strain sk.kt5 were motile, rod-shaped (0.4–0.6×2.5–9.6 μm), stained Gram-positive and formed endospores. Strain sk.kt5 grew at pH 7.6–10.5 (with optimum growth at pH 8.0–9.5), at temperatures in the range 23–44 °C (with optimum growth at 35–37 °C), at NaCl concentrations in the range 0–5 % (w/v) (with optimum growth at 0–0.5 %) and required yeast extract for growth. Only a limited number of substrates were utilized as electron donors, including betaine, formate, lactate, methanol, choline and pyruvate. Elemental sulfur, sulfite, thiosulfate, nitrate and nitrite, but not sulfate or Fe(III) citrate, were used as electron acceptors. The G+C content of the DNA was 41.6 mol%. Phylogenetic analyses of the sequence data for the genes [encoding the major subunits of dissimilatory (bi)sulfite reductase] and the 16S rRNA gene placed strain sk.kt5 within a novel lineage in the class of the phylum . Taken together, the physiological and genotypic data suggest that strain sk.kt5 represents a novel species within a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is sk.kt5 (=JCM 12761=DSM 16504).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64356-0
2006-12-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2831.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64356-0&mimeType=html&fmt=ahah

References

  1. Abildgaard L., Nielsen M. B., Kjeldsen K. U., Ingvorsen K. 2006; Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water. Int J Syst Evol Microbiol 56:1019–1024 [CrossRef]
    [Google Scholar]
  2. Baker B. J., Moser D. P., MacGregor B. J. 13 other authors 2003; Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ Microbiol 5:267–277 [CrossRef]
    [Google Scholar]
  3. Balk M., Weijma J., Friedrich M. W., Stams A. J. M. 2003; Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor. Arch Microbiol 179:315–320
    [Google Scholar]
  4. Bower C. E., Holm-Hansen T. 1980; A salicylate-hypochlorite method for determining ammonia in sea water. Can J Fish Aquat Sci 37:794–798 [CrossRef]
    [Google Scholar]
  5. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [CrossRef]
    [Google Scholar]
  6. Elsgaard L., Isaksen M. F., Jørgensen B. B., Alayse A. M., Jannasch H. W. 1994; Microbial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58:3335–3343 [CrossRef]
    [Google Scholar]
  7. Fontaine F. E., Peterson W. H., McCoy E., Johnson M. J., Ritter G. J. 1942; A new type of glucose fermentation by Clostridium thermoaceticum . J Bacteriol 43:701–706
    [Google Scholar]
  8. Hamilton W. A. 1995; Biofilms and microbially influenced corrosion. In Microbial Biofilms pp  171–182 Edited by Lappin-Scott H. M., Costerton J. W. Cambridge: Cambridge University Press;
    [Google Scholar]
  9. Hungate R. E. 1976; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  10. Imachi H., Sekiguchi Y., Kamagata Y. 7 other authors 2006; Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 72:2080–2091 [CrossRef]
    [Google Scholar]
  11. Kjeldsen K. U., Joulian C., Ingvorsen K. 2004; Oxygen tolerance of sulfate-reducing bacteria in activated sludge. Environ Sci Technol 38:2038–2043 [CrossRef]
    [Google Scholar]
  12. Kjellerup B. V., Olesen B. H., Nielsen J. L., Frølund B., Ødum S., Nielsen P. H. 2003; Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography. Water Sci Technol 47:5117–122
    [Google Scholar]
  13. Kjellerup B. V., Thomsen T. R., Nielsen J. L., Olesen B. H., Frølund B., Nielsen P. H. 2005; Microbial diversity in biofilms from corroding heating systems. Biofouling 21:19–29 [CrossRef]
    [Google Scholar]
  14. Lane D. J. 1991; 16/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  113–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  15. Lee W., Lewandowski Z., Nielsen P. H., Hamilton W. A. 1995; Role of sulfate-reducing bacteria in corrosion of mild steel – a review. Biofouling 8:165–193 [CrossRef]
    [Google Scholar]
  16. Little B. J., Wagner P. A., Characklis W. G., Lee W. 1990; Microbial corrosion. In Biofilms pp  635–670 Edited by Characklis W. G., Marshall K. C. New York: Wiley;
    [Google Scholar]
  17. Ljungdahl L. G. 1986; The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450 [CrossRef]
    [Google Scholar]
  18. Lovley D. R., Phillips E. J. P. 1986; Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  19. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  20. Marshall K. C. 1992; Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM News 58:202–207
    [Google Scholar]
  21. Mogensen G. L., Kjeldsen K. U., Ingvorsen K. 2005; Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulfate-reducing bacterium isolated from activated sludge. Anaerobe 11:339–349 [CrossRef]
    [Google Scholar]
  22. Postgate J. R. 1984 The Sulfate-reducing Bacteria , 2nd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  23. Slobodkin A., Reysenbach A., Mayer F., Wiegel J. 1997; Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. Int J Syst Bacteriol 47:969–974 [CrossRef]
    [Google Scholar]
  24. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  25. Widdel F., Bak F. 1992; Gram-negative mesophilic sulphate-reducing bacteria. In The Prokaryotes , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  26. Wiegel J., Braun M., Gottschalk G. 1981; Clostridium thermoautotrophicum sp. nov., a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260 [CrossRef]
    [Google Scholar]
  27. Zverlov V., Klein M., Lücker S., Friedrich M. W., Kellermann J., Stahl D. A., Loy A., Wagner M. 2005; Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 187:2203–2208 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64356-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64356-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error