1887

Abstract

A Gram-negative, aerobic, non-motile, non-spore-forming and rod-shaped bacterium, strain Gsoil 043, was isolated from soil from a ginseng field in Pocheon province, South Korea. The novel isolate was characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 043 was shown to belong to the family ‘’ and was related to (96.7 %), (96.3 %) and (95.8 %). The 16S rRNA gene sequence similarity of the novel strain to other recognized species within the family ‘’ was less than 87.0 %. The G+C content of genomic DNA was 48 mol%. Phenotypic and chemotaxonomic data (major menaquinone, MK-7; major fatty acids, C 7, iso-C and C) supported the affiliation of strain Gsoil 043 to the genus . The results of physiological and biochemical tests enabled strain Gsoil 043 to be differentiated genotypically and phenotypically from the three species with validly published names. The novel isolate therefore represents a novel species for which the name sp. nov. is proposed, with the type strain Gsoil 043 (=KCTC 12589=LMG 23409).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64322-0
2006-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/8/1939.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64322-0&mimeType=html&fmt=ahah

References

  1. Atlas, R. M. ( 1993; ). Handbook of Microbiological Media. Edited by L. C. Parks. Boca Raton, FL: CRC Press.
  2. Buck, J. D. ( 1982; ). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993.
    [Google Scholar]
  3. Chaturvedi, P., Reddy, G. S. N. & Shivaji, S. ( 2005; ). Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol 55, 2113–2117.[CrossRef]
    [Google Scholar]
  4. Chelius, M. K. & Triplett, E. W. ( 2000; ). Dyadobacter fermentans gen. nov., sp. nov., a novel Gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 50, 751–758.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  6. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  7. Güde, H. ( 1980; ). Occurrence of cytophagas in sewage plants. Appl Environ Microbiol 39, 756–763.
    [Google Scholar]
  8. Hall, T. A. ( 1999; ). bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  9. Hiraishi, A., Ueda, Y., Ishihara, J. & Mori, T. ( 1996; ). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42, 457–469.[CrossRef]
    [Google Scholar]
  10. Im, W.-T., Jung, H.-M., Cui, Y.-S., Liu, Q.-M., Zhang, S.-L. & Lee, S.-T. ( 2005; ). Cultivation of the three hundreds of bacterial species from the soil of the ginseng field and mining the novel lineage bacteria. In Proceedings of the International Meeting of the Federation of Korean Microbiological Societies, abstract A035, p. 169. Seoul: Federation of Korean Microbiological Societies.
  11. Kim, M. K., Im, W.-T., Ohta, H., Lee, M. & Lee, S.-T. ( 2005; ). Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43, 152–157.
    [Google Scholar]
  12. Kimura, M. ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  13. Kouker, G. & Jaeger, K.-E. ( 1987; ). Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53, 211–213.
    [Google Scholar]
  14. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  15. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  16. Moore, D. D. & Dowhan, D. ( 1995; ). Preparation and analysis of DNA. In Current Protocols in Molecular Biology, pp. 2–11. Edited by Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. New York: Wiley.
  17. Reddy, G. S. N. & Garcia-Pichel, F. ( 2005; ). Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000 . Int J Syst Evol Microbiol 55, 1295–1299.[CrossRef]
    [Google Scholar]
  18. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  19. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc.
  20. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  21. Ten, L. N., Im, W.-T., Kim, M.-K., Kang, M.-S. & Lee, S.-T. ( 2004; ). Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56, 375–382.[CrossRef]
    [Google Scholar]
  22. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  23. Tschech, A. & Pfennig, N. ( 1984; ). Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137, 163–167.[CrossRef]
    [Google Scholar]
  24. Weeks, O. B. ( 1981; ). Preliminary studies of the pigments of Flavobacterium breve NCTC 11099 and Flavobacterium odoratum NCTC 11036. In The Flavobacterium-Cytophaga Group, pp. 109–114. Edited by H. Reichenbach & O. B. Weeks. Weinheim: Gesellschaft Für Biotechnologische Forschung.
  25. Widdel, F. & Bak, F. ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  26. Widdel, F., Kohring, G. & Mayer, F. ( 1983; ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134, 286–294.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64322-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64322-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error