1887

Abstract

Novel thermophilic bacteria, designated strains VW1 and MM1, were isolated from hydrothermal fluid and microbial mat samples, respectively, collected from a shallow marine hydrothermal system (water depth 22 m) occurring in coral reefs off Taketomi Island, Okinawa, Japan. Cells of the two novel strains were motile rods with a single polar flagellum in the exponential growth phase. In a medium that included elemental sulfur, cells of the two strains became non-motile with oval to spherical cell shapes. For both strains, growth occurred at between 30 and 60 °C (optimum temperature of 50–55 °C; 60–80 min doubling time) and between pH 5.5 and 7.1 (optimum pH 6.0). The isolates were microaerobic chemolithoautotrophs capable of using thiosulfate or tetrathionate as the sole energy source, O as the sole electron acceptor and CO as the sole carbon source. Organic substrates, such as yeast extract and tryptone, inhibited growth of both strains. The G+C contents of genomic DNA were 51.3 and 49.5 mol% for strains VW1 and MM1, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains were closely related to each other (99.9 % sequence similarity) and were distantly related to other previously described genera within the . The novel isolates could also be differentiated from other gammaproteobacterial genera on the basis of their physiological properties. It is suggested that the novel isolates represent the type species of a new genus, for which the name gen. nov., sp. nov. (type strain MM1=JCM 13439=DSM 17737) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64297-0
2006-08-01
2021-03-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/8/1921.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64297-0&mimeType=html&fmt=ahah

References

  1. Brinkhoff T., Kuever J., Muyzer G., Jannasch H. W. 2005; Genus VI. Thiomicrospira Kuenen and Veldkamp 1972, 253AL . In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 ( The Proteobacteria ), part B ( The Gammaproteobacteria) pp  193–199 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  2. Dando P. R., Thomm M., Arab H. 7 other authors 1998; Microbiology of shallow hydrothermal sites off Palaeochori Bay, Milos (Hellenic Volcanic Arc). Cah Biol Mar 39:369–372
    [Google Scholar]
  3. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  4. Garrity G. M., Bell J. A., Lilburn T. 2005a; Class II. Betaproteobacteria class. nov. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 (The Proteobacteria)p– 575 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  5. Garrity G. M., Bell J. A., Lilburn T. 2005b; Class V. Epsilonproteobacteria class. nov. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 (The Proteobacteria)p– 1145 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  6. Garrity G. M., Bell J. A., Lilburn T. 2005c; Class III. Gammaproteobacteria class. nov. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria>)p– 1 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  7. Götz D., Banta A., Beveridge T. J., Rushdi A. I., Simoneit B. R. T., Reysenbach A. L. 2002; Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359 [CrossRef]
    [Google Scholar]
  8. Hallberg K. B., Lindström E. B. 1994; Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140:3451–3456 [CrossRef]
    [Google Scholar]
  9. Huber R., Wilharm T., Huber D. 7 other authors 1992; Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351 [CrossRef]
    [Google Scholar]
  10. Imhoff J. F. 2005a; Family I. Chromatiaceae Bavendamm 1924, 125AL emend. Imhoff 1984b, 339. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria) pp  3–9 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  11. Imhoff J. F. 2005b; Family II. Ectothiorhodospiraceae Imhoff 1984b, 339VP. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria). pp  41–43 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
  12. Jørgensen B. B., Teske A., Ahmad A. 2005; Genus VII. Thioploca Lauterborn 1907, 242AL. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria). pp  171–178 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
  13. Kalanetra K. M., Huston S. L., Nelson D. C. 2004; Novel, attached, sulfur-oxidizing bacteria at shallow hydrothermal vents possess vacuoles not involved in respiratory nitrate accumulation. Appl Environ Microbiol 70:7487–7496 [CrossRef]
    [Google Scholar]
  14. Kelly D. P., Wood A. P. 2000; Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516 [CrossRef]
    [Google Scholar]
  15. Kelly D. P., Wood A. P. 2005; Genus I. Acidithiobacillus Kelly and Wood 2000, 513VP. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria). pp  60–62 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
  16. Knittel K., Kuever J., Meyerdierks A., Meinke R., Amann R., Brinkhoff T. 2005; Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov. psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. Int J Syst Evol Microbiol 55:781–786 [CrossRef]
    [Google Scholar]
  17. Kuenen J. G. 2005 Genus V. Thiobacterium (ex Janke 1924) La Rivière and Kuenen 1989b, 496VP (Effective publication: La Rivière and Kuenen 1989a, 1983). In Bergey's Manual of Systematic Bacteriology , 2nd edn, vol. 2 ( The Proteobacteria ), part B ( The Gammaproteobacteria ) p– 169 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
  18. Kuenen J. G., Dubinina G. A. 2005; Genus VIII. Thiospira Visloukh 1914, 48AL. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria). pp  178–179 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
  19. Kuenen J. G., Veldkamp H. 1972; Thiomicrospira pelophila , gen. n., sp. n a new obligately chemolithotrophic colourless sulfur bacterium. Antonie van Leeuwenhoek 38:241–256 [CrossRef]
    [Google Scholar]
  20. Lane D. J. 1991; 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–176 Edited by Stackbrandt E., Goodfellow M. Chichester, UK: Wiley;
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R. 28 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  22. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  23. Nakagawa S., Takai K. 2006; Methods for the isolation of thermophiles from deep-sea hydrothermal environments. Methods Microbiol 35:55–91
    [Google Scholar]
  24. Nakagawa S., Nakamura S., Inagaki F., Takai K., Shirai N., Sako Y. 2004; Hydrogenivirga caldilitoris gen. nov., sp. nov. a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. Int J Syst Evol Microbiol 54:2079–2084 [CrossRef]
    [Google Scholar]
  25. Nakagawa S., Takai K., Inagaki F., Hirayama H., Nunoura T., Horikoshi K., Sako Y. 2005; Distribution, phylogenetic diversity and physiological characteristics of epsilon- Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7:1619–1632 [CrossRef]
    [Google Scholar]
  26. Nishihara H., Igarashi Y., Kodama T. 1991; Hydrogenovibrio marinus , gen. nov., sp. nov. a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium. Int J Syst Bacteriol 41:130–133 [CrossRef]
    [Google Scholar]
  27. Oomori T. 1987; Chemical compositions of submarine hot spring water and associated bottom sediments near Taketomi-jima at Southern Part of the Ryukyu Island Arc, North-west Pacific. J Earth Sci Nagoya Univ 35:325–340
    [Google Scholar]
  28. Pichler T., Veizer J., Hall G. E. M. 1999; The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Mar Chem 64:229–252 [CrossRef]
    [Google Scholar]
  29. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  30. Prol-Ledesma R. M., Canet C., Torres-Vera M. A., Forrest M. J., Armienta M. A. 2004; Vent fluid chemistry in Bahia Concepcion coastal submarine hydrothermal system. Baja California Sur, Mexico: J Volcanol Geother Res 137:311–328 [CrossRef]
    [Google Scholar]
  31. Reysenbach A.-L. 2001; Phylum BI. Aquificae phy. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1p– 359 Edited by Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  32. Reysenbach A.-L., Banta A. B., Boone D. R., Cary S. C., Luther G. W. 2000; Microbial essentials at hydrothermal vents. Nature 404:835 [CrossRef]
    [Google Scholar]
  33. Rusch A., Amend J. P. 2004; Order-specific 16S rRNA-targeted oligonucleotide probes for (hyper)thermophilic archaea and bacteria. Extremophiles 8:357–366 [CrossRef]
    [Google Scholar]
  34. Schmidt H. A., Strimmer K., Vingron M., von Haeseler A. 2002; tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504 [CrossRef]
    [Google Scholar]
  35. Schulz H. N., Jørgensen B. B. 2005; Genus VI. Thiomargarita Schulz, Brinkhoff, Ferdelman, Hernandes Marine Teske and Jørgensen 1999b, 1325VP (Effective publication Schulz, Brinkhoff, Ferdelman, Hernandes Marine, Teske and Jørgensen 1999a, 493. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 ( The Proteobacteria ), part B ( The Gammaproteobacteria ) pp  169–171 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  36. Schulz H. N., Brinkhoff T., Ferdelman T. G., Marine M. H., Teske A., Jørgensen B. B. 1999; Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495 [CrossRef]
    [Google Scholar]
  37. Sievert S. M., Brinkhoff T., Muyzer G., Ziebis W., Kuever J. 1999; Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 65:3834–3842
    [Google Scholar]
  38. Sievert S. M., Kuever J., Muyzer G. 2000; Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 66:3102–3109 [CrossRef]
    [Google Scholar]
  39. Strohl W. R. 2005; Genus III. Beggiatoa Trevisan 1842, 56AL. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria). pp  148–161 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
  40. Suzuki Y., Sasaki T., Suzuki M., Tsuchida S., Nealson K. H., Horikoshi K. 2005; Molecular phylogenetic and isotopic evidence of two lineages of chemolithoautotrophic endosymbionts distinct at the subdivision level harbored in one host-animal type: the genus Alviniconcha (Gastropoda: Provannidae). FEMS Microbiol Lett 249:105–112 [CrossRef]
    [Google Scholar]
  41. Takai K., Horikoshi K. 2000; Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17 [CrossRef]
    [Google Scholar]
  42. Takai K., Sako Y. 1999; A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol Ecol 28:177–188 [CrossRef]
    [Google Scholar]
  43. Takai K., Inoue A., Horikoshi K. 1999; Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11 000 m deep Mariana Trench. Int J Syst Bacteriol 49:619–628 [CrossRef]
    [Google Scholar]
  44. Takai K., Komatsu T., Horikoshi K. 2001; Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. Int J Syst Evol Microbiol 51:1425–1435
    [Google Scholar]
  45. Takai K., Inagaki F., Nakagawa S., Hirayama H., Nunoura T., Sako Y., Nealson K. H., Horikoshi K. 2003a; Isolation and phylogenetic diversity of members of previously uncultivated ϵ - Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174
    [Google Scholar]
  46. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003b; Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846 [CrossRef]
    [Google Scholar]
  47. Takai K., Hirayama H., Nakagawa T., Suzuki Y., Nealson K. H., Horikoshi K. 2004; Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, Western Pacific. Int J Syst Evol Microbiol 54:2325–2333 [CrossRef]
    [Google Scholar]
  48. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  49. Wood A. P., Kelly D. P. 1985; Physiological characteristics of a new thermophilic obligately chemolithotrophic Thiobacillus species, Thiobacillus tepidarius . Int J Syst Bacteriol 35:434–437 [CrossRef]
    [Google Scholar]
  50. Zillig W., Holz I., Janekovic D. 7 other authors 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64297-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64297-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error