1887

Abstract

A brown-coloured bacterium was isolated from photoheterotrophic (benzoate) enrichments of flooded paddy soil from Andhra Pradesh, India. On the basis of 16S rRNA gene sequence analysis, strain JA2 was shown to belong to the class , related to (99 % sequence similarity). Cells of strain JA2 are Gram-negative, motile rods with monopolar single flagella. The strain contained bacteriochlorophyll and most probably the carotenoids spirilloxanthin and sphaeroidene, but did not have internal membrane structures. Intact cells had absorption maxima at 378, 488, 520, 590, 802 and 884 nm. No growth factors were required. Strain JA2 grew on benzoate, 2-aminobenzoate (anthranilate), 4-aminobenzoate, 4-hydroxybenzoate, phthalate, phenylalanine, -cinnamate, benzamide, salicylate, cyclohexanone, cyclohexanol and cyclohexane-2-carboxylate as carbon sources and/or electron donors. The DNA G+C content was 74.9 mol%. Based on DNA–DNA hybridization studies, 16S rRNA gene sequence analysis and morphological and physiological characteristics, strain JA2 is different from representatives of other photosynthetic species of the and was recognised as representing a novel species, for which the name sp. nov. is proposed. The type strain is JA2 (=ATCC BAA-35=JCM 13220=MTCC 7087).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64209-0
2006-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/9/2157.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64209-0&mimeType=html&fmt=ahah

References

  1. Amiel, C., Mariey, L., Denis, C., Pichon, P. & Travert, J. ( 2001; ). FTIR spectroscopy and taxonomic purpose: contribution to the classification of lactic acid bacteria. Lait 81, 249–255.[CrossRef]
    [Google Scholar]
  2. Biebl, H. & Pfennig, N. ( 1981; ). Isolation of members of the family Rhodospirillaceae. In The Prokaryotes, pp. 167–273. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. New York: Springer.
  3. Blasco, R. & Castillo, F. ( 1992; ). Light-dependent degradation of nitrophenols by the phototrophic bacterium Rhodobacter capsulatus E1F1. Appl Environ Microbiol 58, 690–695.
    [Google Scholar]
  4. Cole, J. R., Chai, B., Marsh, T. L. & 8 other authors ( 2003; ). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443. RDP-II Hierarchy Browser, http://rdp.cme.msu.edu/hierarchy/hierarchy_browser.jsp?qvector=8&depth=0&openNode=0&seqid=&currentRoot=1616&searchStr=&endDataValue=&showOpt [CrossRef]
    [Google Scholar]
  5. Dutton, P. L. & Evans, W. C. ( 1967; ). Dissimilation of aromatic substrates by Rhodopseudomonas palustris. Biochem J 104, 30–31.
    [Google Scholar]
  6. Felsenstein, J. ( 1989; ). phylip – Phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  7. Finneran, K. T., Johnsen, C. V. & Lovley, D. R. ( 2003; ). Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53, 669–673.[CrossRef]
    [Google Scholar]
  8. Frank, J. & Gaffron, H. ( 1941; ). Photosynthesis. Facts and interpretations. Adv Enzymol Relat Subj Biochem 1, 199–202.
    [Google Scholar]
  9. Hanada, S., Takaichi, S., Matsuura, K. & Nakamura, K. ( 2002; ). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52, 187–193.
    [Google Scholar]
  10. Harada, J., Nagashima, K. V., Takaichi, S., Misawa, N., Matsuura, K. & Shimada, K. ( 2001; ). Phytoene desaturase, CrtI, of the purple photosynthetic bacterium, Rubrivivax gelatinosus, produces both neurosporene and lycopene. Plant Cell Physiol 42, 1112–1118.[CrossRef]
    [Google Scholar]
  11. Harwood, C. S. & Gibson, J. ( 1988; ). Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol 54, 712–717.
    [Google Scholar]
  12. Heider, J. & Fuchs, G. ( 1997; ). Microbial anaerobic aromatic metabolism. Anaerobe 3, 1–22.[CrossRef]
    [Google Scholar]
  13. Hiraishi, A. ( 1994; ). Phylogenetic affiliations of Rhodoferax fermentans and related species of phototrophic bacteria as determined by automated 16S rDNA sequencing. Curr Microbiol 28, 25–29.[CrossRef]
    [Google Scholar]
  14. Hiraishi, A., Hoshino, Y. & Satoh, T. ( 1991; ). Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple non sulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch Microbiol 155, 330–336.
    [Google Scholar]
  15. Hiraishi, A., Yonemitsu, Y., Matsushita, M., Shin, Y. K., Kuraishi, H. & Kawahara, K. ( 2002; ). Characterization of Porphyrobacter sanguineus sp. nov., an aerobic bacteriochlorophyll-containing bacterium capable of degrading biphenyl and dibenzofuran. Arch Microbiol 178, 45–52.[CrossRef]
    [Google Scholar]
  16. Imhoff, J. F. ( 1995; ). Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In Anoxygenic Photosynthetic Bacteria, pp. 1–15. Edited by R. E. Blankenship, M. T. Madigan & C. E. Bauer. Dordrecht: Kluwer.
  17. Imhoff, J. F. ( 2001; ). Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 1863–1866.[CrossRef]
    [Google Scholar]
  18. Imhoff, J. F. & Trüper, H. G. ( 1989; ). Genus Rhodocyclus Pfennig 1978 , 285AL. In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 1678–1682. Edited by J. T. Staley, M. P. Bryant, N. Pfennig & J. G. Holt. Baltimore: Williams & Wilkins.
  19. Imhoff, J., Petri, R. & Süling, J. ( 1998; ). Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 48, 793–798.[CrossRef]
    [Google Scholar]
  20. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  21. Madigan, M. T., Jung, D. O., Woese, C. R. & Achenbach, L. A. ( 2000; ). Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an antarctic microbial mat. Arch Microbiol 173, 269–277.[CrossRef]
    [Google Scholar]
  22. Madigan, M. T., Jung, D. O. & Resnick, S. M. ( 2001; ). Growth of the purple bacterium Rhodobacter capsulatus on the aromatic compound hippurate. Arch Microbiol 175, 462–465.[CrossRef]
    [Google Scholar]
  23. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  24. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  25. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  26. Pedrosalio, C., Mas, J. & Guerrero, R. ( 1985; ). The influence of poly-β-hydroxy butyrate accumulation on cell-volume and buoyant density in Alcaligenes eutrophus. Arch Microbiol 143, 178–184.[CrossRef]
    [Google Scholar]
  27. Pfennig, N. ( 1978; ). Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28, 283–288.[CrossRef]
    [Google Scholar]
  28. Pfennig, N. & Trüper, H. G. ( 1989; ). Family I. Chromatiaceae Bavendamm 1924, 125,AL emended description Imhoff 1984, 339. In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 1637–1653. Edited by J. T. Staley, M. P. Bryant, N. Pfennig & J. G. Holt. Baltimore: Williams & Wilkins.
  29. Pfennig, N., Eimhjellen, K. E. & Liaaen-Jensen, S. ( 1965; ). A new isolate of the Rhodospirillum fulvum group and its photosynthetic pigments. Arch Mikrobiol 51, 258–266.[CrossRef]
    [Google Scholar]
  30. Pinta, V., Ouchane, S., Picaud, M., Takaichi, S., Astier, C. & Reiss-Husson, F. ( 2003; ). Characterization of unusual hydroxy- and ketocarotenoids in Rubrivivax gelatinosus: involvement of enzyme CrtF or CrtA. Arch Microbiol 179, 354–362.
    [Google Scholar]
  31. Rajasekhar, N., Sasikala, Ch. & Ramana, Ch. V. ( 2000; ). Toxicity of N-containing heterocyclic aromatic compounds and their utilization for growth by a few purple non-sulfur bacteria. Bull Environ Contam Toxicol 65, 375–382.[CrossRef]
    [Google Scholar]
  32. Sasikala, K., Ramana, Ch. V., Raghuveer Rao, P. & Subrahmanyam, M. ( 1990; ). Photoproduction of hydrogen, nitrogenase and hydrogenase activities of free and immobilized whole cells of Rhodobacter sphaeroides O.U.001. FEMS Microbiol Lett 72, 23–28.[CrossRef]
    [Google Scholar]
  33. Sasikala, Ch. & Ramana, Ch. V. ( 1996; ). Biodegradable polyesters. Adv Applied Microbiol 42, 97–218.
    [Google Scholar]
  34. Sasikala, Ch. & Ramana, Ch. V. ( 1998; ). Biodegradation and metabolism of unusual carbon compounds by anoxygenic phototrophic bacteria. Adv Microbial Physiol 39, 339–377.
    [Google Scholar]
  35. Scher, S. & Allen, N. B. ( 1960; ). Photochemical oxidation of aromatic acids by Rhodopseudomonas. Bacteriol Proc 60, 67–71.
    [Google Scholar]
  36. Scher, S. & Proctor, M. H. ( 1960; ). Studies with photosynthetic bacteria: anaerobic oxidation of aromatic compounds. In Comparative Biochemistry of Photoreactive Systems, pp. 387–392. Edited by M. B. Allen. New York: Academic Press.
  37. Shivaji, S., Bhanu, N. V. & Aggarwal, R. K. ( 2000; ). Identification of Yersinia pestis as the causative organism of plague in India as determined by 16S rDNA sequencing and RAPD-based genomic fingerprinting. FEMS Microbiol Lett 189, 247–252.[CrossRef]
    [Google Scholar]
  38. Smibert, R. M. & Krieg, N. R. ( 1981; ). General characterization. In Manual of Methods for General Microbiology, pp. 409–443. Edited by R. G. E. Gerhardt, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  39. Sonnenwirth, A. C. ( 1980; ). The enteric bacteria and bacteroids. In Microbiology, 3rd edn, pp. 645–672. Edited by B. D. Davis, R. Dulbecco, H. N. Eisen & H. S. Ginsberg. New York: Harper & Row.
  40. Stackebrandt, E., Murray, R. G. E. & Trüper, H. G. ( 1988; ). Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38, 321–325.[CrossRef]
    [Google Scholar]
  41. Steiger, S., Astier, C. & Sandmann, G. ( 2000; ). Substrate specificity of the expressed carotenoid 3,4-desaturase from Rubrivivax gelatinosus reveals the detailed reaction sequence to spheroidene and spirilloxanthin. Biochem J 349, 635–640.[CrossRef]
    [Google Scholar]
  42. Suyama, T., Shigematsu, T., Takaichi, S., Nodasaka, Y., Fujikawa, S., Hosoya, H., Tokiwa, Y., Kanagawa, T. & Hanada, S. ( 1999; ). Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. Int J Syst Bacteriol 49, 449–457.[CrossRef]
    [Google Scholar]
  43. Tanskul, S., Oda, K., Oyama, H., Noparatnaraporn, N., Tsunemi, M. & Takada, K. ( 2003; ). Substrate specificity of alkaline serine proteinase isolated from photosynthetic bacterium, Rubrivivax gelatinosus KDDS1. Biochem Biophys Res Commun 309, 547–551.[CrossRef]
    [Google Scholar]
  44. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  45. Trüper, H. G. & Pfennig, N. ( 1981; ). Characterization and identification of the anoxygenic phototrophic bacteria. In The Prokaryotes, pp. 299–312. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. New York: Springer.
  46. Wen, A., Fegan, M., Hayward, C., Chakraborty, S. & Sly, L. I. ( 1999; ). Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49, 567–576.[CrossRef]
    [Google Scholar]
  47. Whittle, P. J., Lunt, D. O. & Evans, W. C. ( 1976; ). Anaerobic photometabolism of aromatic compounds by Rhodopseudomonas sp. Biochem Soc Trans 4, 490–491.
    [Google Scholar]
  48. Willems, A., Gillis, M. & de Ley, J. ( 1991; ). Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb nov., and phylogenetic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila and Alcaligenes latus. Int J Syst Bacteriol 41, 65–73.[CrossRef]
    [Google Scholar]
  49. Wright, G. E. & Madigan, M. T. ( 1991; ). Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodomicrobium vannielii. Appl Environ Microbiol 57, 2069–2073.
    [Google Scholar]
  50. Yamanaka, K., Moriyama, M., Minoshima, R. & Tsayuski, Y. ( 1983; ). Isolation and characterization of methanol-utilizing phototrophic bacterium Rhodopseudomonas acidophila M402 and its growth on vanillin derivatives. Agric Biol Chem 47, 1257–1267.[CrossRef]
    [Google Scholar]
  51. Zengler, K., Heider, J., Rosselló-Mora, R. & Widdel, F. ( 1999; ). Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172, 204–212.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64209-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64209-0
Loading

Data & Media loading...

Supplements

Phase-contrast micrograph of strain JA2 . [PDF](87 KB)

PDF

Electron micrograph of ultrathin section of cells of strain JA2 showing the absence of internal membrane structures. [PDF](101 KB)

PDF

Whole-cell absorption spectrum of strain JA2 . [PDF](27 KB)

PDF

Whole-cell component fourier-transform infrared spectrum. [PDF](20 KB)

PDF

Growth and utilization of benzoate by strain JA2 . [PDF](21 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error