1887

Abstract

A novel thermophilic bacterium, strain KW1, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52–78 °C (optimum, 70 °C), pH 5–8 (optimum, pH 7) and 0–4.5 % NaCl (optimum, 1.0 %). The novel isolate was a strictly aerobic heterotroph that utilized complex proteinaceous substrates as well as a variety of carboxylic acids and amino acids. The G+C content of the genomic DNA was 70.8 mol%. Analysis of 16S rRNA gene sequences indicated that strain KW1 is closely related to C21 (98.4 % sequence similarity). However, the DNA–DNA hybridization value for strain KW1 and ATCC BAA-137 was below 46 %. On the basis of the molecular and physiological traits of strain KW1, it represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KW1 (=JCM 13210=DSM 17372).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64203-0
2006-07-01
2021-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1531.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64203-0&mimeType=html&fmt=ahah

References

  1. Alfredsson G. A., Kristjansson J. K., Hjörleifsdottir S., Stetter K. O. 1979; Rhodothermus marinus , gen. nov., sp. nov, a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J Gen Microbiol 134:49–68
    [Google Scholar]
  2. Brill J. A., Wiegel J. 1997; Differentiation between spore-forming and asporogenic bacteria using a PCR and Southern hybridization based method. J Microbiol Methods 31:29–36 [CrossRef]
    [Google Scholar]
  3. Brown D. P., Genova-Raeva L., Green B. D., Wilkinson S. R., Young M., Youngman P. 1994; Characterization of spo0A homologues in diverse Bacillus and Clostridium species identifies DNA-binding domain. Mol Microbiol 14:411–426 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Gascuel O. 1997; bionj: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695 [CrossRef]
    [Google Scholar]
  6. Hokai T., Nishijima M., Miyashita H., Maruyama T. 1995; Dense community of hyperthermophilic sulfur-dependent heterotrophs in a geothermally heated shallow submarine biotope near Kodakara-Jima Island, Kagoshima, Japan. Appl Environ Microbiol 61:1931–1937
    [Google Scholar]
  7. Huber R., Wilharm T., Huber D. 7 other authors 1992; Aquifex pyrophilus gen. nov., sp. nov. represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351 [CrossRef]
    [Google Scholar]
  8. Lauerer G., Kristjansson J. K., Langworthy T. A., König H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105 [CrossRef]
    [Google Scholar]
  9. Nakagawa S., Nakamura S., Inagaki F., Takai K., Shirai N., Sako Y. 2004; Hydrogenivirga caldilitoris gen. nov., sp. nov. a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. Int J Syst Evol Microbiol 54:2079–2084 [CrossRef]
    [Google Scholar]
  10. Nunoura T., Akihara S., Takai K., Sako Y. 2002; Thermaerobacter nagasakiensis sp. nov., a novel aerobic and extremely thermophilic marine bacterium. Arch Microbiol 177:339–344 [CrossRef]
    [Google Scholar]
  11. Oshima T., Imahori K. 1974; Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from Japanese thermal spa. Int J Syst Bacteriol 24:102–112 [CrossRef]
    [Google Scholar]
  12. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  14. Sako Y., Nomura N., Uchida A., Ishida Y., Morii H., Koga Y., Hoaki T., Maruyama T. 1996a; Aeropyrum pernix gen. nov., sp. nov. a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 °C. Int J Syst Bacteriol 46:1070–1077 [CrossRef]
    [Google Scholar]
  15. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. 1996b; Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104 [CrossRef]
    [Google Scholar]
  16. Sako Y., Nakagawa S., Takai K., Horikoshi K. 2003; Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:59–65 [CrossRef]
    [Google Scholar]
  17. Spanevello M. D., Yamamoto H., Patel B. K. C. 2002; Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter . Int J Syst Evol Microbiol 52:795–800 [CrossRef]
    [Google Scholar]
  18. Stetter K. O. 1996; Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158 [CrossRef]
    [Google Scholar]
  19. Takai K., Inoue A., Horikoshi K. 1999; Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11 000 m deep Mariana Trench. Int J Syst Bacteriol 49:619–628 [CrossRef]
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Völkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. 1993; Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926
    [Google Scholar]
  22. Zillig W., Holz I., Janekovic D. 7 other authors 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64203-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64203-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error