1887

Abstract

A bacterial isolate from the Baltic Sea, BA131, was characterized for its physiological and biochemical features, fatty acid profile, G+C content and phylogenetic position based on comparative 16S rRNA gene sequence analysis. The strain was isolated from surface water of the central Baltic Sea during the decay of a plankton bloom. Phylogenetic analyses of the 16S rRNA gene sequence revealed a clear affiliation with the , and showed closest phylogenetic relationships with the genera and . The G+C content of the DNA of strain BA131 was 48.9 mol%. Cells were non-pigmented, Gram-negative, rod-shaped, motile by means of a single polar flagellum and catalase- and oxidase-positive. Growth was observed at salinities from 0 to 8 %, with an optimum at 1–3 %. Temperature for growth ranged from 4 to 37 °C, with an optimum around 25 °C. The fatty acids were dominated by 16 : 0 (17–18 %) and by unsaturated compounds (>61 % of the total): 16 : 17 (24–33 %), 17 : 18 (14–18 %) and 18 : 17 (9–12 %). Based on the data presented, BA131 is proposed as the type strain of a novel species of the genus , sp. nov. The type strain is BA131 (=LMG 23581=CIP 109200).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64172-0
2006-09-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/9/2177.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64172-0&mimeType=html&fmt=ahah

References

  1. Alavi M., Miller T., Erlandson K., Schneider R., Belas R. 2001; Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol 3:380–396 [CrossRef]
    [Google Scholar]
  2. Bianchi A., Bianchi M. 1995; Bacterial diversity and ecosystem maintenance: an overview. In Microbial Diversity and Ecosystem Maintenance pp  185–198 Edited by Hawksworth D. L., Colwell R. R. Wallingford, UK: CAB International (UNEP;
    [Google Scholar]
  3. Brettar I., Höfle M. G. 1993; Nitrous oxide producing heterotrophic bacteria from the water column of the central Baltic: abundance and molecular identification. Mar Ecol Prog Ser 94:253–265 [CrossRef]
    [Google Scholar]
  4. Brettar I., Rheinheimer G. 1992; Influence of carbon availability on denitrification in the water column of the central Baltic. Limnol Oceanogr 37:1146–1163 [CrossRef]
    [Google Scholar]
  5. Brettar I., Christen R., Höfle M. G. 2002; Rheinheimera baltica gen. nov., sp. nov., a blue-coloured bacterium isolated from the central Baltic Sea. Int J Syst Evol Microbiol 52:1851–1857 [CrossRef]
    [Google Scholar]
  6. Brettar I., Labrenz M., Flavier S., Bötel J., Kuosa H., Christen R., Höfle M. G. 2006; Identification of a Thiomicrospira denitrificans -like epsilonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic Sea. Appl Environ Microbiol 72:1364–1372 [CrossRef]
    [Google Scholar]
  7. Dye D. W. 1968; A taxonomic study of the genus Erwinia . NZ J Sci 11:590–607
    [Google Scholar]
  8. Felsenstein J. 1993 phylip – Phylogeny Inference Package, version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  9. Fonnesbech Vogel B., Venkateswaran K., Christensen H., Falsen E., Christiansen G., Gram L. 2000 Polyphasic taxonomic approach in the description of Alishewanella fetalis gen. nov., sp. nov., isolated from a human foetus. Int J Syst Evol Microbiol 50, 1133–1142 [CrossRef]
  10. Gascuel O. 1997; BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695 [CrossRef]
    [Google Scholar]
  11. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Giovannoni S. J., Stingl U. 2005; Molecular diversity and ecology of microbial plankton. Nature 437:343–348 [CrossRef]
    [Google Scholar]
  13. Höfle M. G., Brettar I. 1995; Taxonomic diversity and metabolic activity of microbial communities in the water column of the central Baltic Sea. Limnol Oceanogr 40:868–874 [CrossRef]
    [Google Scholar]
  14. Ma Y., Xue Y., Grant W. D., Collins N. C., Duckworth A. W., van Steenbergen R. P., Jones B. E. 2004; Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lake lakes in China and East Africa. . Extremophiles 8:193–200 [CrossRef]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of the deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  16. Moore E. R. B., Mau M., Arnscheidt A., Böttger E. C., Hutson R. A., Collins M. D., Van De Peer Y., De Wachter R., Timmis K. N. 1996; The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu strictu) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:476–492
    [Google Scholar]
  17. Moore E. R. B., Arnscheidt A., Krüger A., Strömpl C., Mau M. 1999; Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Molecular Microbial Ecology Manual pp. 1.6.1.1–1.6.1.15 Edited by Akkermans A. D. L, van Elsas J. D., de Bruijn F. J. Dordrecht: Kluwer Academic Press;
    [Google Scholar]
  18. Mullis K. B., Faloona E. 1987; Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350
    [Google Scholar]
  19. Oppenheimer C. H., ZoBell C. E. 1952; The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J Mar Res 11:10–18
    [Google Scholar]
  20. Perrière G., Gouy M. 1996; WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [CrossRef]
    [Google Scholar]
  21. Pinhassi J., Berman T. 2003; Differential growth response of colony-forming alpha- and gamma-proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol 69:199–211 [CrossRef]
    [Google Scholar]
  22. Poretsky R. S., Bano N., Buchan A., LeCleir G., Kleikemper J., Pickering M., Pate W. M., Moran M. A., Hollibaugh J. T. 2005; Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126 [CrossRef]
    [Google Scholar]
  23. Reed D. W., Fujita Y., Delwiche M. E., Blackwelder D. B., Sheridan P. P., Uchida T., Colwell F. S. 2002; Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl Environ Microbiol 68:3759–3770 [CrossRef]
    [Google Scholar]
  24. Romanenko L. A., Uchino M., Falsen E., Zhukove N. V., Mikhailov V. V., Uchimura T. 2003; Rheinheimera pacifica sp. nov., a novel halotolerant bacterium isolated from deep sea water of the Pacific. Int J Syst Evol Microbiol 53:1973–1977 [CrossRef]
    [Google Scholar]
  25. Sasser M. 1990; Identification of bacteria by the gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64172-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64172-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error