1887

Abstract

The taxonomic status of an actinomycete isolated from sediment collected from the Mariana Trench was established using a combination of genotypic and phenotypic data. Isolate MT8 had chemotaxonomic and morphological properties consistent with its classification in the genus , and formed a distinct phyletic line in the 16S rRNA gene tree together with the type strain of . The isolate was readily distinguished from the latter, and from representatives of other species, using DNA–DNA relatedness and phenotypic criteria. Predominant cellular fatty acids were oleic, palmitic and tuberculostearic acids and a hexadecenoic acid. The DNA G+C content was 65.2 mol%. It is apparent that the isolate belongs to a novel species of . Strain MT8 (=DSM 44944=NCIMB 14085) was thus considered to be the type strain of a novel species in the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64132-0
2006-05-01
2021-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/5/1123.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64132-0&mimeType=html&fmt=ahah

References

  1. Butler W. R., Floyd M. M., Brown J., Toney S. R., Daneshvar M. I., Cooksey R. C., Carr J., Steigerwalt A. G., Charles N. 2005; Novel mycolic acid-containing bacteria in the family Segniliparaceae fam. nov., including the genus Segniliparus gen. nov., with descriptions of Segniliparus rotundus sp.nov. and Segniliparus rugosus sp. nov. Int J Syst Evol Microbiol 55:1615–1624 [CrossRef]
    [Google Scholar]
  2. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp  265–309 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1993 phylip - Phylogeny Inference Package, version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  7. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284 [CrossRef]
    [Google Scholar]
  8. Goodfellow M., Maldonado L. A. 2006; The families Dietziaceae , Gordoniaceae , Nocardiaceae and Tsukamurellaceae . In The Prokaryotes , 3rd edn, vol. 3, Archaea and Bacteria . Firmicutes , Actinomycetes Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer; (in press
    [Google Scholar]
  9. Gordon R. E., Mihm J. M. 1962; Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 98:628–636
    [Google Scholar]
  10. Hamid M. E., Minnikin D. E., Goodfellow M., Ridell M. 1993; Thin-layer chromatographic analysis of glycolipids and mycolic acids from Mycobacterium farcinogenes , Mycobacterium senegalense and related taxa. Zentralbl Bakteriol 279:354–367 [CrossRef]
    [Google Scholar]
  11. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 329:1319–1322
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–123 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kämpfer P., Andersson M. A., Rainey F. A., Kroppenstedt R. M., Salkinoja-Salonen M. 1999; Williamsia muralis gen. nov., sp. nov. isolated from the indoor environment of a children's day care centre. Int J Syst Bacteriol 49:681–687 [CrossRef]
    [Google Scholar]
  14. Kato C., Li L., Tamaoka J., Horikoshi K. 1997; Molecular analyses of the sediment of the 11,000-m-deep of the Mariana Trench. Extremophiles 1:117–123 [CrossRef]
    [Google Scholar]
  15. Kim S. B., Falconer C., Williams E., Goodfellow M. 1998; Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48:59–68 [CrossRef]
    [Google Scholar]
  16. Kim S. B., Brown R., Oldfield C., Gilbert S. C., Iliarionov S., Goodfellow M. 2000; Gordonia amicalis sp. nov., a new dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036 [CrossRef]
    [Google Scholar]
  17. Kluge A. G., Farris F. G. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  18. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics pp  173–199 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  19. Lechevalier H. A., Lechevalier M. P. 1970; A critical evaluation of the genera of aerobic actinomycetes. In The Actinomycetales pp  393–405 Edited by Prauser H. Jena: VEB Gustav Fischer;
    [Google Scholar]
  20. Lechevalier H. A., De Bièvre C., Lechevalier M. P. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  22. Pathom-aree W., Stach J. E. M., Ward A. C., Horikoshi K., Bull A. T., Goodfellow M. 2006 Diversity of actinomycetes isolated from the Challenger Deep sediment (10898 m) from the Mariana Trench. Extremophiles (in press
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Soddell J. A., Stainsby F. M., Eales K. L., Kroppenstedt R. M., Seviour R. J., Goodfellow M. 2006; Millisia brevis gen. nov., sp. nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 56739–744 [CrossRef]
    [Google Scholar]
  25. Stach J. E. M., Maldonado L. A., Ward A. C., Bull A. T., Goodfellow M. 2004; Williamsia maris sp. nov., a novel actinomycete isolated from the Sea of Japan. Int J Syst Evol Microbiol 54:191–194 [CrossRef]
    [Google Scholar]
  26. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal of a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  27. Staneck J. L., Roberts G. D. 1974; Simplified approach to the identification of aerobic actinomycetes by thin layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  28. Sutcliffe I. C. 2000; Characterisation of a lipomannan lipoglycan from the mycolic acid containing actinomycete Dietzia maris . Antonie van Leeuwenhoek 78:195–201 [CrossRef]
    [Google Scholar]
  29. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  30. Uchida K., Kudo T., Suzuki K., Nakase T. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56 [CrossRef]
    [Google Scholar]
  31. Vickers J. C., Williams S. T., Ross G. W. 1984; A taxonomic approach to selective isolation of streptomycetes from soil. In Biological, Biochemical and Biomedical Aspects of Actinomycetes pp  553–561 Edited by Ortiz-Ortiz L., Bojalil L. F., Yakoleff V. Orlando: Academic Press;
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  33. Yassin A. F., Hupfer H. 2006; Williamsia deligens sp. nov., isolated from human blood. Int J Syst Evol Microbiol 56:193–197 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64132-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64132-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error