1887

Abstract

Strains 18, 61 and 77 were isolated from two permanently cold fjord sediments on the west coast of Svalbard. The three psychrotolerant strains, with temperature optima at 20–23 °C, were able to grow at the freezing point of sea water, −2 °C. The strains oxidized important fermentation products such as hydrogen, formate and lactate with sulfate as the electron acceptor. Sulfate could be replaced by sulfite, thiosulfate or elemental sulfur. Poorly crystalline and soluble Fe(III) compounds were reduced in sulfate-free medium, but no growth occurred under these conditions. In the absence of electron acceptors, fermentative growth was possible. The pH optimum for the strains was around 7·1. The DNA G+C contents were 43·3 and 42·0 mol% for strains 18 and 61, respectively. Strains 18, 61 and 77 were most closely related to (95·0–95·7 % 16S rRNA gene sequence similarity). Strains 18 and 77, exhibiting 99·9 % sequence similarity, represent a novel species for which the name sp. nov. is proposed. The type strain is strain 18 (=DSM 17176=JCM 12924). Strain 61 was closely related to strains 18 and 77 (97·6 and 97·5 % 16S rRNA gene sequence similarity), but on the basis of DNA–DNA hybridization strain 61 represents a novel species for which the name sp. nov. is proposed. The type strain is strain 61 (=DSM 16995=JCM 12925).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64057-0
2006-04-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/4/681.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64057-0&mimeType=html&fmt=ahah

References

  1. Alazard, D., Dukan, S., Urios, A., Verhé, F., Bouabida, N., Morel, F., Thomas, P., Garcia, J.-L. & Ollivier, B. ( 2003; ). Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53, 173–178.[CrossRef]
    [Google Scholar]
  2. Buchholz-Cleven, B. E. E., Rattunde, B. & Straub, K. L. ( 1997; ). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol 20, 301–309.[CrossRef]
    [Google Scholar]
  3. Canfield, D. E., Jørgensen, B. B., Fossing, H. & 7 other authors ( 1993; ). Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113, 27–40.[CrossRef]
    [Google Scholar]
  4. Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C. & Pye, K. ( 1993; ). Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361, 436–438.[CrossRef]
    [Google Scholar]
  5. Glud, R. N., Risgaard-Petersen, N., Thamdrup, B., Fossing, H. & Rysgaard, S. ( 2000; ). Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE-Greenland). Mar Ecol Prog Ser 206, 59–71.[CrossRef]
    [Google Scholar]
  6. Holmes, D. E., Bond, D. R. & Lovley, D. R. ( 2004; ). Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70, 1234–1237.[CrossRef]
    [Google Scholar]
  7. Jørgensen, B. B. ( 1982; ). Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296, 643–645.[CrossRef]
    [Google Scholar]
  8. Kostka, J. E., Thamdrup, B., Glud, R. N. & Canfield, D. E. ( 1999; ). Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180, 7–21.[CrossRef]
    [Google Scholar]
  9. Li, Y.-L., Vali, H., Sears, S. K., Yang, J., Deng, B. & Zhang, C. L. ( 2004; ). Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochim Cosmochim Acta 68, 3251–3260.[CrossRef]
    [Google Scholar]
  10. Lovley, D. R., Roden, E. E., Phillips, E. J. P. & Woodward, J. C. ( 1993; ). Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113, 41–53.[CrossRef]
    [Google Scholar]
  11. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  12. Nielsen, J. L., Liesack, W. & Finster, K. ( 1999; ). Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina. Int J Syst Bacteriol 49, 859–865.[CrossRef]
    [Google Scholar]
  13. Pedersen, K., Arlinger, J., Ekendahl, S. & Hallbeck, L. ( 1996; ). 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Äspö hard rock laboratory, Sweden. FEMS Microbiol Ecol 19, 249–262.
    [Google Scholar]
  14. Postgate, J. R. ( 1984; ). Genus Desulfovibrio Kluyver and van Niel 1936, 397AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 666–672. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  15. Postgate, J. R. & Campbell, L. L. ( 1966; ). Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 30, 732–738.
    [Google Scholar]
  16. Rysgaard, S., Thamdrup, B., Risgaard-Petersen, N., Fossing, H., Berg, P., Christensen, P. B. & Dalsgaard, T. ( 1998; ). Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 175, 261–276.[CrossRef]
    [Google Scholar]
  17. Sagemann, J., Jørgensen, B. B. & Greef, O. ( 1998; ). Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol J 15, 85–100.[CrossRef]
    [Google Scholar]
  18. Tebo, B. M. & Obraztsova, A. Y. ( 1998; ). Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162, 193–198.[CrossRef]
    [Google Scholar]
  19. Thamdrup, B. & Canfield, D. E. ( 1996; ). Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41, 1629–1650.[CrossRef]
    [Google Scholar]
  20. Widdel, F. & Bak, F. ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  21. Zellner, G., Messner, P., Kneifel, H. & Winter, J. ( 1989; ). Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester. Arch Microbiol 152, 329–334.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64057-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64057-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error