1887

Abstract

Three yellow-pigmented strains associated with rice plants were characterized by using a polyphasic approach. The nitrogen-fixing abilities of these strains were confirmed by acetylene reduction assay and gene detection. The three strains were found to be very closely related, with 99·9 % 16S rRNA gene sequence similarity and greater than 70 % DNA–DNA hybridization values, suggesting that the three strains represent a single species. 16S rRNA gene sequence analysis indicated that the strains were closely related to , with 99·5 % similarity. The chemotaxonomic characteristics (G+C content of the DNA of 68·0 mol%, ubiquinone Q-10 system, 2-OH as the only hydroxy fatty acid and homospermidine as the sole polyamine) were similar to those of members of the genus . Based on DNA–DNA hybridization values and physiological characteristics, the three novel strains could be differentiated from other recognized species of the genus . The name sp. nov. is proposed to accommodate these bacterial strains; the type strain is Y39 (=NBRC 15497=IAM 15283=CCTCC AB205007).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64056-0
2006-04-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/4/889.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64056-0&mimeType=html&fmt=ahah

References

  1. Anderson, G. R. ( 1955; ). Nitrogen fixation by Pseudomonas-like soil bacteria. J Bacteriol 70, 129–133.
    [Google Scholar]
  2. Cantera, J. J. L., Kawasaki, H. & Seki, T. ( 2004; ). The nitrogen-fixing gene (nifH) of Rhodopseudomonas palustris: a case of lateral gene transfer? Microbiology 150, 2237–2246.[CrossRef]
    [Google Scholar]
  3. Denner, E. B. M., Paukner, S., Kämpfer, P., Moore, E. R. B., Abraham, W.-R., Busse, H.-J., Wanner, G. & Lubitz, W. ( 2001; ). Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51, 827–841.[CrossRef]
    [Google Scholar]
  4. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  6. Fox, G. E., Wisotzkey, J. D. & Jurtshuk, P., Jr ( 1992; ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42, 166–170.[CrossRef]
    [Google Scholar]
  7. Hill, S. & Postgate, J. R. ( 1969; ). Failure of putative nitrogen-fixing bacteria to fix nitrogen. J Gen Microbiol 58, 277–285.[CrossRef]
    [Google Scholar]
  8. Jordan, D. C. ( 1984; ). Family III. Rhizobiaceae Conn 1938, 321AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 234–256. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  9. Kämpfer, P., Denner, E. B. M., Meyer, S., Moore, E. R. B. & Busse, H.-J. ( 1997; ). Classification of “Pseudomonas azotocolligansAnderson 1955 , 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47, 577–583.[CrossRef]
    [Google Scholar]
  10. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  11. Lovell, C. R., Friez, M. J., Longshore, J. W. & Bagwell, C. E. ( 2001; ). Recovery and phylogenetic analysis of nifH sequences from diazotrophic bacteria associated with dead aboveground biomass of Spartina alterniflora. Appl Environ Microbiol 67, 5308–5314.[CrossRef]
    [Google Scholar]
  12. Moulin, L., Munive, A., Dreyfus, B. & Boivin-Masson, C. ( 2001; ). Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411, 948–950.[CrossRef]
    [Google Scholar]
  13. Oyaizu-Masuchi, Y. & Komagata, K. ( 1988; ). Isolation of free-living nitrogen-fixing bacteria from the rhizosphere of rice. J Gen Appl Microbiol 34, 127–164.[CrossRef]
    [Google Scholar]
  14. Poly, F., Monrozier, L. J. & Bally, R. ( 2001; ). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152, 95–103.[CrossRef]
    [Google Scholar]
  15. Raymond, J., Siefert, J. L., Staples, C. R. & Blankenship, R. E. ( 2004; ). The natural history of nitrogen fixation. Mol Biol Evol 21, 541–554.
    [Google Scholar]
  16. Rosado, A. S., Duarte, G. F., Seldin, L. & Van Elsas, J. D. ( 1998; ). Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments. Appl Environ Microbiol 64, 2770–2779.
    [Google Scholar]
  17. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  18. Swofford, D. L. ( 1998; ). paup* – Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  19. Takeuchi, M., Hamana, K. & Hiraishi, A. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417.
    [Google Scholar]
  20. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  21. Ueda, T., Suga, Y., Yahiro, N. & Matsuguchi, T. ( 1995; ). Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177, 1414–1417.
    [Google Scholar]
  22. Xie, C.-H. & Yokota, A. ( 2003; ). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49, 345–349.[CrossRef]
    [Google Scholar]
  23. Xie, C.-H. & Yokota, A. ( 2004; ). Phylogenetic analyses of the nitrogen-fixing genus Derxia. J Gen Appl Microbiol 50, 129–135.[CrossRef]
    [Google Scholar]
  24. Xie, C.-H. & Yokota, A. ( 2005a; ). Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa. Int J Syst Evol Microbiol 55, 1233–1237.[CrossRef]
    [Google Scholar]
  25. Xie, C.-H. & Yokota, A. ( 2005b; ). Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55, 1435–1438.[CrossRef]
    [Google Scholar]
  26. Xiong, J., Fischer, W. M., Inoue, K., Nakahara, M. & Bauer, C. E. ( 2000; ). Molecular evidence for the early evolution of photosynthesis. Science 289, 1724–1730.[CrossRef]
    [Google Scholar]
  27. Young, J. P. W. ( 1992; ). Phylogenetic classification of nitrogen-fixing organisms. In Biological Nitrogen Fixation, pp. 43–86. Edited by G. Stacey, R. H. Burris & H. J. Evans. New York: Chapman & Hall.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64056-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64056-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 889 - 893

sequence-based phylogenetic tree showing the relationships between strain Y39 and other nitrogen-fixing bacteria. [PDF](222 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error