1887

Abstract

The bacterial strain SJT, along with 15 other mesophilic, neutrophilic and facultatively sulfur-oxidizing chemolithotrophic isolates, was isolated by enrichment on reduced sulfur compounds as the sole energy and electron source from soils immediately adjacent to the roots of , a slender leguminous herb of the Lower Gangetic plains of India. Strain SJT was able to oxidize thiosulfate and elemental sulfur for chemolithoautotrophic growth. 16S rRNA and gene sequence-based phylogenetic analyses showed that the Gram-negative rod-shaped bacterium belonged to the genus and was most closely related to , , and . Unequivocally low 16S rRNA (<97 %) and (⩽88 %) gene sequence similarities to all existing species of the most closely related genera, a unique fatty acid profile, a distinct G+C content (59·6 mol%) and phenotypic characteristics all suggested that strain SJT represents a novel species. DNA–DNA hybridization and SDS-PAGE analysis of whole-cell proteins also confirmed the taxonomic uniqueness of SJT. It is therefore proposed that isolate SJT (=LMG 22697=MTCC 7001) be classified as the type strain of a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63967-0
2006-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/1/91.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63967-0&mimeType=html&fmt=ahah

References

  1. Appia-Ayme, C., Little, P. J., Matsumoto, Y., Leech, A. P. & Berks, B. C. ( 2001; ). Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183, 6107–6118.[CrossRef]
    [Google Scholar]
  2. Deb, C., Stackebrandt, E., Pradella, S., Saha, A. & Roy, P. ( 2004; ). Phylogenetically diverse new sulfur chemolithotrophs of alpha-proteobacteria isolated from Indian soils. Curr Microbiol 48, 452–458.
    [Google Scholar]
  3. de Lajudie, P., Willems, A., Nick, G. & 9 other authors ( 1998; ). Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48, 369–382.[CrossRef]
    [Google Scholar]
  4. Eisen, J. A. ( 1995; ). The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41, 1105–1123.
    [Google Scholar]
  5. Ezaki, T., Hashimoto, Y., Takeuchi, N., Yamamoto, H., Liu, S. L., Miura, H., Matsui, K. & Yabuuchi, E. ( 1988; ). Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J Clin Microbiol 26, 1708–1713.
    [Google Scholar]
  6. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1993; ). phylip (phylogenetic inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  8. Friedrich, C. G., Quentmeier, A., Bardischewsky, F., Rother, D., Kraft, R., Kostka, S. & Prinz, H. ( 2000; ). Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182, 4677–4687.[CrossRef]
    [Google Scholar]
  9. Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., Lloyd-Macgilp, S. A. & Young, J. P. ( 2001; ). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51, 2037–2048.[CrossRef]
    [Google Scholar]
  10. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  11. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  12. Kämpfer, P., Müller, C., Mau, M., Neef, A., Auling, G., Busse, H.-J., Osborn, A. M. & Stolz, A. ( 1999; ). Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov. Int J Syst Bacteriol 49, 887–897.[CrossRef]
    [Google Scholar]
  13. Kaneko, T., Nakamura, Y., Sato, S. & 14 other authors ( 2002; ). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9, 189–197.[CrossRef]
    [Google Scholar]
  14. Kelly, D. P. & Wood, A. P. ( 1994; ). Synthesis and determination of thiosulfate and polythionates. Methods Enzymol 243, 475–501.
    [Google Scholar]
  15. Labrenz, M., Tindall, B. J., Lawson, P. A., Collins, M. D., Schumann, P. & Hirsch, P. ( 2000; ). Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50, 303–313.[CrossRef]
    [Google Scholar]
  16. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  17. Mukhopadhyaya, P. N., Deb, C., Lahiri, C. & Roy, P. ( 2000; ). A soxA gene, encoding a diheme cytochrome c, and a sox locus, essential for sulfur oxidation in a new sulfur lithotrophic bacterium. J Bacteriol 182, 4278–4287.[CrossRef]
    [Google Scholar]
  18. Rogel, M. A., Hernández-Lucas, I., Kuykendall, D. L., Balkwill, D. L. & Martinez-Romero, E. ( 2001; ). Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67, 3264–3268.[CrossRef]
    [Google Scholar]
  19. Rother, D., Henrich, H.-J., Quentmeier, A., Bardischewsky, F. & Friedrich, C. G. ( 2001; ). Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183, 4499–4508.[CrossRef]
    [Google Scholar]
  20. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  21. Segovia, L., Piñero, D., Palacios, R. & Martinez-Romero, E. ( 1991; ). Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl Environ Microbiol 57, 426–433.
    [Google Scholar]
  22. Sneath, P. H. A. & Sokal, R. R. ( 1973; ). Numerical Taxonomy. San Francisco: W. H. Freeman.
  23. Sullivan, J. T., Eardly, B. D., van Berkum, P. & Ronson, C. W. ( 1996; ). Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol 62, 2818–2825.
    [Google Scholar]
  24. Tighe, S. W., de Lajudie, P., Dipietro, K., Lindström, K., Nick, G. & Jarvis, B. D. W. ( 2000; ). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50, 787–801.[CrossRef]
    [Google Scholar]
  25. Velázquez, E., Igual, J. M., Willems, A. & 9 other authors ( 2001; ). Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51, 1011–1021.[CrossRef]
    [Google Scholar]
  26. Vinuesa, P., Silva, C., Lorite, M. J., Izaguirre-Mayoral, M. L., Bedmar, E. J. & Martínez-Romero, E. ( 2005; ). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28, 702–716.[CrossRef]
    [Google Scholar]
  27. Vishniac, W. & Santer, M. ( 1957; ). The thiobacilli. Bacteriol Rev 21, 195–213.
    [Google Scholar]
  28. Wang, E. T., van Berkum, P., Sui, X. H., Beyene, D., Chen, W. X. & Martínez-Romero, E. ( 1999; ). Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49, 51–65.[CrossRef]
    [Google Scholar]
  29. Wang, E. T., Kan, F. L., Tan, Z. Y., Toledo, I., Chen, W. X. & Martínez-Romero, E. ( 2003; ). Diverse Mesorhizobium plurifarium populations native to Mexican soils. Arch Microbiol 180, 444–454.[CrossRef]
    [Google Scholar]
  30. Weir, B. S., Turner, S. J., Silvester, W. B., Park, D.-C. & Young, J. M. ( 2004; ). Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol 70, 5980–5987.[CrossRef]
    [Google Scholar]
  31. Young, J. P. W. ( 1998; ). Bacterial evolution and the nature of species. In Advances in Molecular Ecology, pp. 119–131. Edited by G. R. Carvalho. Amsterdam: IOS Press.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63967-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63967-0
Loading

Data & Media loading...

Supplements

Phenogram of sp. nov. SJT and related strains deduced by comparing their available phenotypic characteristics. [PDF](40 KB)

PDF

Coomassie blue-stained SDS-PAGE gel of whole-cell-protein preparations from sp. nov. SJT (duplicate samples in lanes 1 and 2) in comparison with its phylogenetic relatives KCT001 (lane 3), LMG 17826 t2 (4), LMG 18932 (5), LMG 19008 (6) and LMG 11892 (7).

IMAGE

Fatty acid profile of sp. nov. SJT in comparison with related taxa. [PDF](26 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error