1887

Abstract

A novel alkalitolerant, sulphate-reducing bacterium (strain RT2) was isolated from alkaline district heating water. Strain RT2 was a motile vibrio (0.5–0.8 μm wide and 1.4–1.9 μm long) and grew at pH 6.9–9.9 (optimum at pH 9.0–9.4) and at 16–47 °C (optimum at 43 °C). The genomic DNA G+C content was 64.7 mol%. A limited number of compounds were used as electron donors with sulphate as electron acceptor, including lactate, pyruvate, formate and hydrogen/acetate. Sulphite and thiosulphate also served as electron acceptors. Based on physiological and genotypic properties, the isolate was considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RT2 (=DSM 16529=JCM 12612). The strain is the first alkali-tolerant member of the genus to be described.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63909-0
2006-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/5/1019.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63909-0&mimeType=html&fmt=ahah

References

  1. Abildgaard, L., Ramsing, N. B. & Finster, K. ( 2004; ). Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp. nov. and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov. Int J Syst Evol Microbiol 54, 393–399.[CrossRef]
    [Google Scholar]
  2. Baena, S., Fardeau, M. L., Labat, M., Ollivier, B., Garcia, J. L. & Patel, B. K. ( 1998; ). Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulphate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst Appl Microbiol 21, 498–504.[CrossRef]
    [Google Scholar]
  3. Cline, J. D. ( 1969; ). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14, 454–458.[CrossRef]
    [Google Scholar]
  4. Dinh, H. T., Kuever, J., Mussmann, M., Hassel, A. W., Stratmann, M. & Widdel, F. ( 2004; ). Iron corrosion by novel anaerobic microorganisms. Nature 427, 829–832.[CrossRef]
    [Google Scholar]
  5. Elsgaard, L., Isaksen, M. F., Jørgensen, B. B., Alayse, A.-M. & Jannasch, H. W. ( 1994; ). Microbial sulphate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58, 3335–3343.[CrossRef]
    [Google Scholar]
  6. Fossing, H. & Jørgensen, B. B. ( 1989; ). Measurement of bacterial sulphate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry 8, 205–222.
    [Google Scholar]
  7. Friedrich, M. W. ( 2002; ). Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184, 278–289.[CrossRef]
    [Google Scholar]
  8. Goeres, D. M., Nielsen, P. H., Smidt, H. D. & Frølund, B. ( 1998; ). The effect of alkaline pH conditions on a sulphate reducing consortium from a Danish district heating plant. Biofouling 12, 273–286.[CrossRef]
    [Google Scholar]
  9. Hamilton, W. A. ( 1985; ). Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39, 195–217.[CrossRef]
    [Google Scholar]
  10. Hamilton, W. A. ( 1998; ). Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact. Biodegradation 9, 202–212.
    [Google Scholar]
  11. Hamilton, W. A. ( 2003; ). Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19, 65–76.[CrossRef]
    [Google Scholar]
  12. Hungate, R. E. ( 1976; ). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  13. Ingvorsen, K. & Jørgensen, B. B. ( 1984; ). Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch Microbiol 139, 61–66.[CrossRef]
    [Google Scholar]
  14. Kjellerup, B. V., Olesen, B. H., Nielsen, J. L., Frølund, B., Ødum, S. & Nielsen, P. H. ( 2003; ). Monitoring and characterization of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography. Water Sci Technol 47, 117–122.
    [Google Scholar]
  15. Kjellerup, B. V., Thomsen, T. R., Nielsen, J. L., Olesen, B. H., Frølund, B. & Nielsen, P. H. ( 2005; ). Microbial diversity in biofilms from corroding heating systems. Biofouling 21, 19–29.[CrossRef]
    [Google Scholar]
  16. Lovley, D. ( 2000; ). Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edn, release 3.4, 12 January 2000. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer. http://141.150.157.117:8080/prokPUB/index.htm
  17. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K. H. ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef]
    [Google Scholar]
  18. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  19. Mogensen, G. L., Kjeldsen, K. U. & Ingvorsen, K. ( 2005; ). Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulfate-reducing bacterium isolated from activated sludge. Anaerobe 11, 339–349.[CrossRef]
    [Google Scholar]
  20. Pak, K.-R., Lee, H.-J., Lee, H. K., Kim, Y.-K., Oh, Y.-S. & Choi, S.-C. ( 2003; ). Involvement of organic acid during corrosion of iron coupon by Desulfovibrio desulfuricans. J Microbiol Biotechnol 13, 937–941.
    [Google Scholar]
  21. Pankhania, I. P. ( 1988; ). Hydrogen metabolism in sulphate-reducing bacteria and its role in anaerobic corrosion. Biofouling 1, 27–47.[CrossRef]
    [Google Scholar]
  22. Peck, H. D., Jr ( 1993; ). Bioenergetic strategies of the sulfate-reducing bacteria. In The Sulfate-Reducing Bacteria: Contemporary Perspectives, pp. 41–76. Edited by J. M. Odom & R. Singleton, Jr. New York: Springer.
  23. Pikuta, E. V., Zhilina, T. N., Zarvarzin, G. A., Kostrikina, N. A., Osipov, G. A. & Rainey, F. A. ( 1998; ). Desulfonatronum lacustre sp. nov. a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Mikrobiologiia 67, 123–131 (in Russian).
    [Google Scholar]
  24. Pikuta, E., Lysenko, A., Suzina, N., Osipov, G., Kuznetsov, B., Tourova, T., Akimenko, V. & Laurinavichius, K. ( 2000; ). Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50, 25–33.[CrossRef]
    [Google Scholar]
  25. Pikuta, E. V., Hoover, R. B., Bej, A. K., Marsic, D., Whitman, W. B., Cleland, D. & Krader, P. ( 2003; ). Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53, 1327–1332.[CrossRef]
    [Google Scholar]
  26. Postgate, J. R. ( 1984; ). Genus Desulfovibrio Kluyver and van Niel 1936, 397AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 666–672. Edited by N. R. Krieg & J. G. Holt. Baltimore: William & Wilkins.
  27. Rao, T. S., Sairam, T. N., Viswanathan, B. & Nair, K. V. K. ( 2000; ). Carbon steel corrosion by iron oxidizing and sulphate-reducing bacteria in a freshwater cooling system. Corros Sci 42, 1417–1431.[CrossRef]
    [Google Scholar]
  28. Swofford, D. L. ( 2003; ). paup* – Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  29. Thomsen, T. R., Finster, K. & Ramsing, N. B. ( 2001; ). Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67, 1646–1656.[CrossRef]
    [Google Scholar]
  30. Widdel, F. & Bak, F. ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  31. Zhilina, T. N., Zavarzin, G. A., Rainey, F. A., Pikuta, E. N., Osipov, G. A. & Kostrikina, N. A. ( 1997; ). Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47, 144–149.[CrossRef]
    [Google Scholar]
  32. Zhilina, T. N., Zavarzina, D. G., Kuever, J., Lysenko, A. M. & Zavarzin, G. A. ( 2005; ). Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. Int J Syst Evol Microbiol 55, 1001–1006.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63909-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63909-0
Loading

Data & Media loading...

Supplements

Transmission electron photomicrograph of a dividing cell of strain RT2 . [PDF](1136 KB)

PDF

Consensus trees showing the phylogenetic affiliation of the DsrAB and ApsA amino acid sequences of strain RT2 . [PDF](140 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error